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Abstract

A novel building thermal conditioning model predictive control (MPC) framework is developed
to consider human-in-the-loop feedback of thermal preference votes from occupants by updating
individualized Bayesian thermal preference models in real-time using on-line learning methods.
On-line presence (or occupancy) models are also developed and an aggregation mechanism using
an approximated expectation function is proposed to simplify the stage cost function. A toolchain
to construct compatible resistance-capacitance building models, run the MPC loop, perform on-
line Bayesian learning, and solve the resulting optimization problem is implemented. Finally
simulation experiments are performed as a proof of concept using real thermal preference data
from the RP-884 database. The framework shows potential in exploiting combined variance in
thermal preferences and presence between different occupants to reduce energy consumption and
improve overall thermal comfort.
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Chapter 1

Introduction

Buildings are heated and cooled to achieve thermal comfort for the occupants inside them. It
has long be intuited and now shown with mounting empirical evidence that achieving thermal
comfort increases productivity and health [41, 82, 84, 148]. These productivity increases can be
due to reduced sick leave or break time in addition to actual increases in the speed with which
work can be done [52]. Thermal comfort is therefore crucial in developed regions where people
spend well over 90% of their lives indoors [141]. At the same time, buildings consume 20% to
40% of total energy in these developed regions, with approximately half dedicated to thermal
conditioning [123]. In cool climates this portion can be even higher, for example in Switzerland
from 2000 to 2016 buildings consumed on average 45% of total energy. Space heating alone
consumed 34% of total Swiss energy over this 17 year period [47]. The Intergovernmental Panel
on Climate Change (IPCC) has also listed building energy reduction as the largest and most
cost effective mitigation measure to reduce global atmospheric carbon [98]. For these reasons
the thermal conditioning of buildings carries considerable social, economic, and environmental
impact. In this chapter an account of existing practices of thermal conditioning and a case for
considering individualized thermal comfort to enhance performance is developed.

1.1 Thermal Comfort Standards

The original definition of thermal comfort from the ISO 7730 standard is given as “ that con-
dition of mind which expresses satisfaction with the thermal environment” [70]. This definition
is based entirely on a subjective individual expectation and experience. It is clear that a large
psychological and physiological variance between people exists in their experience of the same
thermal environment [176]. The implementation within thermal comfort standards commonly
adopted in practice has however been based on an average experienced sensation of large popula-
tions. In particular the widely implemented predicted mean vote (PMV) and percentage people
dissatisfied (PPD) method developed by Fanger in 1970 [51, 131]. The basis of this method is a
regression between a non-linear heat load balance on the human body and the surveyed thermal
sensation of individuals under different conditions within a climate controlled chamber. This
method then predicts the mean vote of a large population on a thermal comfort scale under
steady-state conditions (i.e. after being in the space for some time to reach near thermal equilib-
rium). The dominant ASHRAE 55 [10] and EN 15251 standards, which were based on the EN
ISO 7730 standard, also implement the PMV method by default [32]. This steady-state method
is commonly used by practitioners to prescribe a static temperature set-point for a building given
design values for typical situations [147]. A critical comparison of existing physics based ther-
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mal models of humans is given in [74]. The Fanger heat load balance is proposed for extension
within this work because of its success in empirical studies and wide scale implementation as the
physical basis of the PMV.

In contrast to the steady-state approach the adaptive method assumes people can adapt to a wide
range of thermal environments given sufficient opportunity [131]. It has been only in roughly the
last two decades that adaptive methods have gained popularity, and only recently that they have
been added as alternative standard methods for naturally ventilated buildings [38, 39]. These
methods are implemented in standards as linear regression between outdoor temperature and the
indoor set-point temperature from field data of large populations. A key distinction between the
steady-state methods being the use of field data of office workers in numerous buildings instead
of climate controlled chambers and experiment participants. The two landmark field data sets
used in standards being the RP-884 database for the ASHRAE 55-2010 [39] and SCATs database
for the EN 15251 [95, 110].

In practice both widely accepted thermal comfort standard implementations are based on regres-
sion over a large population which is intended to satisfy a theoretical average occupant. While
these implementations are useful for achieving guidelines they are not able to incorporate the
variance between individuals and therefore cannot be used to predict the underlying phenom-
ena of individualized sensation or preference [176]. Even extrapolation to averages of different
populations (e.g. in different climates, cultures, or building types) has been shown inaccurate
[16, 117]. This is not surprising given the goal of the standards as guideline documents and the
limitations of data acquisition and analysis at the time the standards were initially developed.
However it has been proposed that even typically acceptable thermal and air quality conditions
can reduce cognitive performance significantly and thus greater attention is required [160]. There
have also been substantial improvements in data acquisition infrastructure with the prolifera-
tion of inexpensive sensors in recent years. These factors motivate the development of individual
models for thermal conditioning that directly account for the variance between individuals.

1.2 Thermal Conditioning of Buildings

Asserting static temperature bounds invariant to the seasons or outdoor conditions, even if
conservative and carefully derived, has long been observed to be “ neither necessary nor desirable”
[111, 130]. This can lead to frustrating cases of expending energy to reduce thermal comfort. In a
recent study of four large Canadian office buildings (comprising 650 thermal zones) the majority
of temperature set-point change requests made to building operators were either to increase
the temperature set-points during the cooling season or to decrease them during the heating
season [57]. In the same study when occupants were given direct control over the thermostat,
set-point changes were 24 times more frequent. Interestingly it was also noted that the building
operators tended to make larger magnitude set-point changes upon hot and cold complaints than
the occupants did.

Giving occupants direct control of thermostat set-points in shared offices is however problematic
due to multiple and conflicting temperature preferences. This has been observed in a recent study
of a large newly constructed high performance building in Budapest, Hungary [17]. Occupants
were able to change the thermostat set-point +/- 3 ◦C from the default set-points. During a
walk-through audit the researchers found 48% of thermal zones were in heating mode and 52%
in cooling, with large variance in set-points from 19 to 28 ◦C. In this extreme case occupants
had adversarial feedback with and used increasingly inefficient methods to restore their personal
comfort, such as: personal electric heaters, covering air vents, or opening windows during heating

2



periods. This in part caused both high energy costs and occupant discomfort with 42% of all
office workers being unsatisfied with thermal comfort or air quality in the study.

While centrally controlled systems can reduce perceived control of occupants they alleviate many
other problems and are in many cases preferred by occupants. For example in a field study of 313
occupants within cellular (single person) and open-plan offices it was observed that 80% of people
in open plan offices preferred a centrally operated thermal conditioning, as opposed to only 10% in
cellular offices [142]. In interviews the main reason communicated by occupants was that setting
a temperature that satisfies everyone is difficult, causing arguments and social tension. Without
additional colleagues in the same thermal zone most occupants would then prefer to have control.
A minority of occupants reported that they would prefer not to think about the temperature in
any case and simply focus on their work. Although, every occupant interviewed expressed a desire
to have some control if they were uncomfortable. Similar results are found in another survey
study from 1160 occupants on university campuses in three regions of Italy [41]. They find that
control over the indoor environment is over 80% of the time shared within occupants in the same
zone. The same survey indicates that thermostats are the control action occupants find most
challenging (least ease and least knowledge) largely because of required discussions with other
occupants to make a change. The authors also note a general dissatisfaction by occupants with
the shared control of thermostat settings. Additionally observed in their study is the correlation
between thermal comfort and both workplace satisfaction and self-assessed productivity.

From a strictly economic perspective (neglecting any social or other benefits) it is understood
that the personnel costs in an office are over two orders of magnitude higher than energy costs
and the thermal comfort of occupants is prioritized over energy savings [38, 160]. Given current
estimates of the effect of thermal comfort on productivity this is completely justified. For exam-
ple a recent longitudinal within-subjects study of the effects of environmental stressors (thermal
discomfort, lighting discomfort, and noise) on office worker productivity finds a productivity
decrease in the range of 2.4 to 14.6% given one, two, or three environmental stressors [82]. The
authors note a range consistent with the order of magnitude range typically found in literature
for one or two stressors of 0.5% to 5%. The main finding of the study is however that the com-
bined effect of multiple environmental stressors is most detrimental to office productivity (i.e. if
an occupant is both too cold and annoyed by noise they become much more distracted). Poten-
tially the true productivity benefit of achieving thermal comfort for a given individual is from
avoiding situations with multiple environmental stressors, not simply avoiding the single stressor
of thermal discomfort independently. Furthermore while thermal discomfort on its own does not
have a large average decrease in their study, there is a large variance between individuals.

This change in the effect between individuals is also seen in a study measuring the effect of tem-
perature on office worker productivity and correlating it also with electroencephalography (EEG)
brain signal measurements [107]. The authors have a small population of seven participants, each
performing an addition task and a typing task at 22.2 ◦C and at 30 ◦C. Notably the performance
between participants and tasks shows completely different correlations with temperature, even in
different directions. As mentioned in a recent review [131], the different methods used to assess
productivity and different field environments requires more attention before drawing conclusions
on the effect of thermal comfort on work place productivity for whole populations. It is how-
ever quite clear that the high inter-personal variance observed within many studies indicates a
complex and individual relationship.
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1.3 Building Energy Management Systems

The complexity of building energy management systems (BEMS or sometimes BMS) has been
growing steadily in recent decades as new energy distribution, storage, and generation technolo-
gies are being deployed. Generally a BEMS can be considered a high-level automation layer
providing holistic system logic above the field layer that performs equipment level sensory mea-
surements and actuation in the building with relays, valves, or by setting references (set-points)
for local equipment controllers [108]. In pursuit of greater efficiency additional complexity also
comes from sharing energy generation, storage, and load between multiple buildings in an energy
hub [33, 35, 94]. MPC methods have been extensively researched for BEMS, including control
of HVAC, lighting, and appliances, as well as energy storage and generation [1, 108, 143, 150].
Additional techniques such as robust MPC [34, 149] and stochastic MPC [121] have also been
shown capable of accounting for uncertainty in predictive models.

Shaikh et al. [143] find that MPC is the most popular control method with researchers as it can
deal directly with constraints on multi-output control actuation and exploit knowledge of both
system dynamics and disturbances. Other control methods such as fuzzy logic controllers and
agent systems are also mentioned in [143]. In [1] the advantages of MPC are explained in light of
their applications to HVAC. The authors compare MPC with other hard control methods, as well
as other classes of control methods, such as classical control (ON/OFF and PID), soft control
(fuzzy logic and neural networks). They conclude from both simulation and field experimental
results that MPC offers significant advantages in handling varied or slow dynamics with delays,
constraints of physical actuation, and time-varying exogenous disturbances. MPC has also been
proposed for the integration of occupants, individual buildings, and energy hubs to the energy
grid at large to yield energy savings [42, 78, 102].

MPC has been demonstrated to exploit predictive information about system disturbances such
as weather [116], energy price [101, 128], and building occupancy [54, 115]. Disturbances in the
dynamic sense being any exogenous input to the system that cannot be influenced by the control
actuation. Lighting and appliance control generally cannot make use of anything but extremely
short-term predictive information of as the demand cannot be stored within the building as
thermal energy can be. Therefore the majority of building predictive control research focuses
on HVAC, and in particular buildings with longer thermal response times [108]. Occupancy
predictions usage in building MPC has been field tested in [2] and [122] where 30% and 7-52%
energy savings are reported as compared to scheduled cooling operations respectively. It has
been a result of some studies in [115] and [54] that long-term predictive occupancy information
does not significantly improve controller energy savings. These results could be due to modeling
of all occupants with a single model and not considering variance in the thermal preferences of
occupants in these studies. Though in all simulation and field studies mentioned using at least
real-time occupancy detection does yield significant savings.

Sturzenegger et al. [146] presents a review of MPC building control field experiments and a cost
benefit analysis which indicates that building MPC is near commercial viability. They determine
that while technical performance and energy savings have been proven, engineering costs related
to the model and software development are still prohibitive. This is because in many cases
the sensor hardware exists already in low level control loops so adding the high level MPC may
only require additional software interfaces over a network. The model development cost has been
estimated at 75% for such a project [129]. Towards reducing the development effort Sturzenegger
et al. propose three strategies for further work: 1) a control framework to create and solve the
optimization problem and interface with low level controllers, 2) a Model generation frame work
to aide in development of building models that are both accurate and suitable for optimization,
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and 3) training of engineers and technicians.

The authors in [129] note that the typical linear system models used for thermal dynamics need
extension to equipment dynamics, which may require control actuation for example by setting a
flow rate instead of a heat flux. This combined equipment model is then likely to be non-linear
if the heating system is not electric resistance but something more complex such as a heat pump
coupled with a radiator or fan coil unit. Linearization of non-linear dynamics in the region of
operation is a potential solution, however non-linear optimization methods are also possible. As
result more research into non-linear systems which may have non-convex optimization problems
is required. In a similar fashion research into the formulation of the objective function is required
such that the goal of globally optimal control is meaningful. Despite these open areas of research
the authors in [129] propose MPC as a strong candidate to supersede current rule-based building
control practices.

Killian and Kozek in [78] ask if there is any “ silver bullet” for developing the building dynamics
model. They explore the model-structures of white-box (physics-based), grey-box (parameter
estimation) and black-box (data driven). White-box models are common in engineering analysis
and use domain knowledge combined with underlying physics to impose the structure and pa-
rameters of the system model. While appealing in theoretical study these model can be costly
to deploy in real world systems due to the reliance on domain knowledge of the specific system
and manual calibration. Black-box methods, also called machine learning methods, instead use
data from the real system to fit a (typically non-linear) function for the combined structure
and parameters of the model. This can reduce the model complexity and cost however comes
with the bias-variance trade-off (or over-fitting and under-fitting problem), which is the trade-off
between a complex (high variance) and approximate (high bias) model [72]. The complex model
will contain additional structure for variance in the training dataset that may be unrelated to
the model output. Alternatively, the approximate model will be biased towards some structures
in the dataset, neglecting others that may be relevant to the model output. This issue is crucial
because buildings will likely have limited excitation during normal operating conditions [146].
Finally there is also reduced interpretability of the model where the parameters and structure
no longer have a physical meaning.

Grey-box methods are hybrids in that the structure of the model in whole or in part can be
taken from domain knowledge of the system. The parameters of the model can then be estimated
using system identification techniques or optimization. This method allows for the exploitation
of domain knowledge of the specific system where existing and data driven fitting of otherwise
difficult to model parts. The authors in [78] note the ability to directly encode structure for the
building thermal zones as a key benefit for grey-box building models. They also mention that
expert engagement should be part of building MPC projects. Including this domain knowledge
where possible is a good way to improve both accuracy and interpretability of the building model.
For these reasons grey-box methods are chosen for development of the occupant predictive models
as discussed in later sections.

Each extension of the MPC optimization problem with information about disturbances can pro-
vide more accurate predictions for the objective function can improve overall system performance.
For example considering time varying energy prices (hourly, time of use, and real-time) yielded up
to 42% lower electricity costs in simulation [101]. Many building MPC studies reviewed in [103]
consider occupancy comfort in the objective cost, however it is typically only a post-calculated
variable from the Fanger PMV method, deviation from a constant temperature set-point [172],
or simply being within static upper and lower temperature bounds. This treatment of thermal
comfort in MPC, and building operations more broadly, is in need of incorporating thermal
comfort as experienced by occupants, and ideally through direct occupant feedback.
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1.4 Integrating Occupant Behavior

The recently concluded five year International Energy Agency (IEA) Energy in Buildings and
Communities (EBC) Annex 66 Definition and Simulation of Occupant Behavior in Buildings
research programme final report underscores occupant behaviour as a significant factor to both
energy use and occupant comfort [169, 170]. The authors also indicate that data collection
is fundamental to modelling behavior because of the diversity in both occupants and building
contexts, which includes psychological and sociological factors as well as physical. Therefore
detailed physics-based approaches alone do not always outperform simple deterministic models
if important factors are neglected or measured inaccurately. For this reason they propose that
grey-box methods (also called inverse modelling, machine learning, or system identification)
should be considered for developing scalable models for different buildings and occupants. The
Annex 66 authors further propose model predictive control (MPC) for integrating occupant
behavior into BEMS to achieve higher levels of comfort, operational cost reductions, and energy
savings.

In a recent international survey of 274 building performance simulation practitioners the majority
of participants agreed that occupants use more energy in reality than what they normally assume
in simulation models [113]. Additionally, 75% agreed that simulation tools need more occupancy
features. Occupancy behavior modeling is a key issue in current literature, with modeling of
average occupants and disregarding their individual variance named as a source for the so-called
performance gap [60]. Many other operational issues linked to occupants are addressed in [76],
such as: lack of occupancy monitoring, lack of occupant knowledge of energy efficiency and
building operation, and mismatch between idealized assumptions and actual occupant behavior
patterns.

It can be seen that the impact of occupant interaction and feedback during building operations
is not well described in models used for design of buildings and design of control systems. If for
example an occupant prefers to be warmer in the summer, and decides to open the window to
a warmer outdoor temperature (if perhaps because they are not able to adjust the thermostat),
a static set-point controller will increase its effort to cool the room and waste more energy.
This creates adversarial feedback between the occupant and the controller where the occupant
seeks to override the controller but cannot, both infuriating the occupants and causing energy
inefficient behavior [56, 84]. The psychological component of occupant feedback with regards
to perceived control should not be neglected. For this reason it is a common practice to install
placebo thermostats that are not connected to anything solely to improve the occupants perceived
control [56].

In a survey of 248 low income households on energy saving intentions perceived control is one
of the most important factors [27]. It is intuitive that those who feel they cannot control their
building energy consumption having diminished intention to do so. Their findings also show cost
as the most frequently sited reason for energy saving, and comfort for energy usage as one may
expect. One potential method to reduce occupant energy usage is through eco-feedback systems
which encourage energy saving behavior through positive feedback or incentives. [118] reviews
the current state of eco-feedback systems that guided behavior change to energy conservation,
concluding that their longterm efficacy is still an open question and possible conflicts between
energy goals of the system and comfort of occupants may erode benefits. They posit the in-
teresting question: How can the building control system for energy and comfort interact with
and adapt to occupant preferences? Based on review of existing research in [174], accounting for
actual occupancy behavior could yield energy savings in the range of 5% to 30% for commercial
buildings and 10% to 25% for residential buildings. MPC has the potential to achieve these
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energy savings through multi-objective optimization of cost, energy, and comfort while handling
system constraints while providing a transparent feedback interface for occupants. Interpretable
integration of occupant feedback could additionally improve perceived control and incentivize
energy saving behavior which could further increase energy savings.

Eichler et al. in [45] proposes human-in-the-loop feedback through a game between occupant
agents and the BEMS. The BEMS is able to give occupants a small payment to deviate from
fixed temperature bounds in order to save energy costs, and the occupant agents (or potentially
occupant directly if feedback timing issues could be resolved) can accept this payment or reject
it. A generalized Nash equilibrium problem is then formulated to minimize system energy costs
and temperature deviations (in degrees per hour). This feedback mechanism aggregates occupant
preferences for different temperatures (as reported by the agents) at the thermal zone level and
uses distributed optimization to solve for the equilibrium in a receding horizon. They additionally
note that the occupant agent models could be learned so that occupants do not need to give
frequent feedback. The method allows for black box modeling of the occupant agents so a wide
range of techniques are available for implementation.

1.5 Research Contributions

The concept of a thermobile, which changes the temperature to adapt to the current thermal
environment and demands (as opposed to a thermostat) has been written about in various forms
for some time by thermal comfort researchers [111]. As inspired by Eichler et al. [45], this work
proposes the use of occupant feedback, processed into continuously updated machine learning
models (on-line learning), as a component of the feedback control loop. In this way the controller
is continuously learning its cost function based on feedback from occupants within the building
system it controls. This could also be viewed as the function generating comfort temperature
bounds being formulated as a high-latency interactive feedback loop with the occupant directly.
This concept is implemented using MPC because of its well documented success in BEMS controls
(as previously discussed), and especially in exploiting a wide range of predictive models in a
reliable, interpretable, and optimal way. The implemented control loop investigated in simulation
is shown schematically in Figure 1.1 below.

7



Figure 1.1: Schematic diagram of implemented building energy management system (BEMS) control loop with
human-in-the-loop feedback.

The thermal state is denoted by Xz,k for zone z at time k (chosen to denote discrete time steps),
this state includes the dry bulb temperature, humidity, and running mean outdoor temperature.
Occupant feedback is given in the form of thermal preferences, TP , which can be one of either
want warmer, want no change, or want cooler for any time step. The benefits of this feedback
stemming from unambiguity and simplicity are further explained in section 2.1.

The thermal preference data is directly given by occupants and could be collected through a
simple smart phone app. The occupant presence (occupancy) Oi,k of each occupant i could
be measured with minimal sensing equipment, for example as in Konis et al. [81] using radio
data from occupant smart phones. The next step in the control loop is the on-line learning
of an individualized predictive model of thermal preference and occupancy for each occupant
based on their feedback and the measured thermal state Yz,k. On-line learning model here
refers to a model that is updated within the control loop by each new observed data point.
For the thermal preference model this feedback is simply the preference vote of the occupants.
In the occupancy model feedback is the passively measured presence of each occupant. To
simplify the experiments the thermal state measurements are assumed perfectly accurate, though
additional consideration of measurement error through state estimation could be incorporated.
The output is a probabilistic function for each possible thermal preference conditional on the
thermal state, for example P (TP = warmer ‖ Xz,k). This function is also conditional on the
occupancy, which itself is only conditional on time. The expected value of preferences of each
type is used to aggregate the individual predictive models at the thermal zone level as detailed in
Section 5.2. This expectation function, E[Pk(TP )], is then part of the stage cost function of the
resulting discrete finite time MPC optimization problem. Also considered are occupancy related
disturbances vo, k such as metabolic heat gains (vo, k here refers to the occupancy as opposed
to exogenous disturbances denoted by ve, k).

The MPC minimizes energy consumption and the expectation of occupants preferring to be
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warmer or cooler (see Section 5.2). This optimization output is the optimal control sequence
u∗
k, the first input of which is applied to the building system then the control loop repeated in

typical MPC fashion. The building system is emulated with the same thermal dynamics as the
MPC model to avoid modeling errors, the reduction of which is not the focus of this work. The
research contributions of this work are in developing this probabilistic multi-objective control
loop, outlining an upper bound on system performance with perfect information, and finally by
characterizing how on-line learning models approach ground truth in simulation.

Our approach is similar in spirit to the multi-agent approach in [171], however we perform
centralized optimization at the building level for each thermal zone with predictive models of
thermal preferences and occupancy for a receding horizon MPC approach. The use of these
on-line learned models has been proposed as a future research area in [143] and [1] to decrease
feedback latency with grey-box models and allow for direct use in a feedback loop. The on-line
learning of these individual preference and occupancy models is integrated in the control loop.
Similar also to the aggregation of predictive models for different loads at the building level with
energy hubs in [35], this work proposes aggregation of predictive models of different occupants
within the same thermal zone. The combined variance of the preferences of each occupant and
their occupancy patterns may provide sufficient deviation from a static optimal temperature to
demonstrate the flexibility of the MPC system and achieve both energy savings and improved
comfort. This approach is also similar to the human-in-the-loop feedback proposed by Eichler et
al. [45] but differs from the distributed optimization method by 1) considering only preference
as the observed variable instead of temperatures and 2) by directly learning each individual
occupant’s thermal preference functions and sharing them with the centralized optimization
through cumulative expectation functions at the thermal zone level.

It should also be noted that formulation of thermal comfort as an individualized probabilistic
function has benefits in the design stage of buildings. Explicitly representing the provisions a
building has for occupants to adapt and attain personal comfort can offer greater flexibility to
building designers and improved performance simulation if adopted in standard practices [111].
This could help shift to a descriptive rather than prescriptive implementation in standards. The
question of interest is then how implemented on-line learning predictive models can track the
theoretical limits of MPC with perfect predictive models. In this work both an on-line thermal
comfort prediction and occupancy prediction algorithm are implemented based on recent methods
proposed in literature and simulation experiments of a small multi-occupant office are conducted
to answer this question.
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Chapter 2

Occupant Behavior

The theory of occupant behavior from a building energy performance perspective has been widely
addressed within the recent IEA-EBC Annex 66 project [169]. The bulk of the development
effort within the annex 66 project is towards simulation of occupants, i.e. generating time-series
occupant data from a stochastic model that has similar statistics as measured data sets. The
purpose of this is largely for more accurate building performance simulation (i.e. to estimate
how a given building performs in possible scenarios) to inform decision making during building
design. One such result for simulation being a co-simulation tool called the obFMU [65, 67], a
review of which can be found in [31]. Each occupant behavior can be measured and simulated
to have similar statistics as measured longitudinal data sets, for example with the obFMU or
methods presented in [60]. The researchers within this project show that the occupant behaviors
effecting energy usage are:

• Leaving and entering thermal zones.

• Adjustment of thermostats set-points.

• Switching lights on and off.

• Switching appliances or equipment on and off.

• Opening and closing of windows.

• Opening and closing of window shading.

The interdisciplinary work within the Annex 66 shows new research directions and advances
toward better consideration of occupant behavior [64, 68]. However, these methods are geared
toward building performance simulation and additional work is required to develop predictive
models for optimization within an MPC framework. Predictive models are developed to accu-
rately predict a specific time-series with minimal error compared to ground truth measured data.
Predictive models can then be used for operations in an MPC framework in three ways, 1) using
receding horizon predictions for disturbances, 2) directly using a predictive model in the cost
function, and 3) using a predictive model for the state dynamics. Both 1) and 2) are investigated
through individualized predictive models of occupants, which are the focus of this work. When
considering use within the cost function or state dynamics there must be additional constraints on
models, such as being twice differentiable or having no time dependent control flows. Crucially,
these individualized occupant models consider both inter-occupant and intra-occupant variance
which can be quite large [59].

Each behavior can be seen as an adaptive measure taken by occupants to restore some type of
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comfort (thermal, visual, or aural). Thermostat adjustment is related solely to thermal comfort,
though it has a complex social aspect when considering spaces shared by multiple occupants
as previously discussed. Window opening/closing and shading adjustment are complex because
they could be due to any type of comfort. For example a window could be opened to make the
space more visually appealing and then closed due to unwanted noise from outside. In particular
lighting levels and glare are important for shading adjustment [56]. Existing predictive models
for window opening/closing and shading adjustment are not highly accurate as assessed by Dong
et al. in [43]. These and other predictive models, for example of door opening, require additional
development before they would be beneficial to building MPC implementation when considering
the added complexity. Lighting and appliance usage (plug-loads) can contribute significant heat
to the space, but with the introduction of LED lighting and energy efficient appliances their
contribution is increasingly reduced. Lighting and plug load models are also extremely dependent
on occupancy and there is no pre-operation or load-shifting opportunities for lighting and most
appliances (i.e. an occupant only wants the lighting or appliance to be on when they want to use
it and not before or after). This makes predictive models of lighting and plug-loads less helpful for
MPC as underlying occupancy models, however combining these models could increase accuracy
of electrical demand predictions for grid-scale optimization.

Occupant presence remains the core of the occupant behavior, in that occupants can only exhibit
physical behavior if they are physically present, yet Dong et al. [43] also note that models for
different behaviors are purpose built and typically not interconnected. For these reasons this work
focuses on implementing an individualized on-line learning predictive occupant presence model
which can be extended to predict more detailed behavior conditional on occupant presence.
Occupant thermal preference, as observed proxy for thermal comfort, is then implemented in
this way. A brief treatment of the theoretical basis for observed behaviors of thermal comfort
and occupancy are given in the following sections. In the following chapters the predictive model
implementations are detailed.

2.1 Thermal Comfort

Recent reviews of thermal comfort point to the increasing support of the adaptive thermal com-
fort theory [38, 104, 131]. It is however important to note that adaptive comfort approach is
not applicable in buildings that provide no way for occupants to adapt to different thermal
states. The reasons for this can be social factors such as uniform or dress policies as well as
not having physical means such as operable windows. These conditions are similar to the con-
trolled experiments performed for derivation of the steady state methods, therefore making them
more applicable. However air-conditioned buildings can provide adaptive measures just as free-
running (naturally ventilated) buildings [104]. Observed adaptive measures are evaluated in [104]
based on availability and use. A framework for evaluating observed adaptive measures based on
effectiveness, ease of use, and economy is proposed in [104] for understanding how occupants eval-
uate different adaptive behavior opportunities and plan their actions. This becomes exceedingly
complex if cultural norms and past personal experience are considered. Another more general
ontological framework considering the drivers, needs, actions, and systems (DNAS) occupants
utilize to achieve thermal comfort is proposed in [66].

Halawa and van Hoof mention that the push to investigate the adaptive methods has however led
to not considering important findings of the heat balance methods [58]. The adaptive thermal
heat balance (ATHB) framework proposed by Schweicker et al. in [138] merges the steady-state
heat balance and adaptive methods. The core of this method is the same heat load balance on
the occupant as the PMV, but including adaptive regression coefficients accounting for the effect
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of the outdoor temperature on clothing and metabolic rate. We propose a further extension to
this framework by estimating additional parameters of radiant temperature and air velocity to
further reduce the data acquisition burden, leaving only the easiest two of the six typical factors
of the typical steady state heat balance to be measured, plus measuring additionally the outdoor
temperature which is also inexpensive. This is similar to the successful work by Burrati et al.
[24] in using air temperature and relative humidity to estimate the PMV. A schematic showing
these observed and estimated variables is shown in Figure 2.1 below.

Figure 2.1: Diagram of extended adaptive thermal heat balance (ATHB) model, figure adapted from [87].

The heat load balance yields the thermal load, L(Xz,k, θ), which is a function of the thermal
state Xz,k and the regression parameters θ. This heat load has a physical interpretation as being
the amount of heat that is being transferred (in Watts) to or from the occupant to the thermal
environment via convection and radiation. Conduction is negligible in typical indoor settings.
Thermal preferences, TP , of either: want warmer, want no change, or want cooler are the
observed variable for thermal comfort used in this work. This feedback is typically referred to as
the McIntyre index [96] and has been used similarly in the thermal preference prediction method
developed by Lee et al. [87]. Kim et al. [79] note that thermal sensation, thermal acceptability,
thermal preference, and thermal satisfaction are possible thermal comfort feedback variables, with
thermal preference being the closest to measuring what the ideal conditions are, and therefore
best suited to HVAC control. There is growing consensus that thermal comfort scales and
thermal sensation votes are inadequate in predicting or characterizing thermal comfort [140].
This is largely due to the fact they were intended to represent averages of large populations not
individual occupants [124]. There are additional issues with interpretation of common thermal
comfort indices for continuous occupant feedback. For example the thermal sensation vote (TSV)
or seven point ASHRAE comfort scale (3 being cold, 0 being neutral, and 3 being hot), which
is used for the PMV, does not mean the same thing to different people, especially in different
languages, climates, or cultures. The implicit assumption in this scale is that all occupants
want to feel thermally neutral (vote of 0) which has been proven invalid. In a survey presented
by Humphreys et al. [69] 57% of respondents preferred a sensation other than neutral with
preferred sensations ranging from cool to hot. For these reasons thermal preference is used as
the direct feedback mechanism from each occupant on the thermal preference scale or MCI to
avoid ambiguity.

It should also be noted that this model does not take into account the localized effects such as
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drafts (which could not be accurately measured by an inexpensive sensor) or other psychological
phenomena such as visual satisfaction (e.g. due to lighting or colors). The actual occupant
behavior (i.e. detailed information of what activity the occupant is doing within the space) is
also not considered within this model, aside from expression of thermal preferences and phys-
ical presence. It is assumed that the occupants have unknown personal goals independent of
the thermal state, therefore unobserved and unmodeled secondary factors dominate their un-
observed behavior. Alternatively, detailed physics based thermal comfort models for transient
and asymmetrical environments (e.g. the UC Berkeley model) rely on computational fluid dy-
namics (CFD) simulation for non-uniform air movement which greatly increase complexity and
makes implementation intractable for use within an optimization problem [28, 32]. Another
limitation of these detailed models is that they are not combined with thermoregulation and
behavioral models. For these reasons the extended ATHB model is used for further development
and simulation experiments.

Rupp et al. mention that personalized conditioning represents “ probably the best ways to in-
crease user acceptability with the thermal environment” [131]. This is because setting a single
thermal state for multiple occupants has the inherent limitations of not being able to satisfy
any one occupant fully (unless by chance they happen to prefer exactly the thermal state that
least upsets all other occupants). Of course the reality is that no thermal zone is completely
homogeneous, so exploiting this within a personalized conditioning framework could create het-
erogeneous thermal micro-zones around each occupant to achieve greatest thermal comfort. This
is important when considering personal fans, or convective cooling with supply air, which can
help achieve comfort when the cooling set-point is increased. A review of personal comfort field
studies in [152] shows energy savings from cooling set point increases in the range of 4-51% when
the cooling set-point is increased by 2.5-6 ◦C. Similarly, personal radiant heating has shown
promising results in allowing heating set-point decreases, though more testing is required to
separate its effect from other variables. Interestingly, this energy savings is from simply increas-
ing the dead-band range and not considering predictive controls, so further energy savings and
comfort improvements could be realized doing so.

The on-line individualized comfort models developed within this work are in spirit to the frame-
work proposed by Kim et al. for continuous learning of personalized comfort models [79]. Kim
et al. further investigates the use of a personal comfort system implemented in a heated chair
that occupants can control with their thermal preference responses and a personal comfort is
learned [80]. One potential issue with these personal comfort models is that the size of the data
set available for each person is limited by their feedback frequency and may be small. Aggregat-
ing data between occupants or using this as prior data could help alleviate this problem. The
authors also mention that batch learning using all available data is computationally intensive
and makes continuously updating the models difficult. For this they recommend on-line learning
methods which are investigated within this work. Further work into personal comfort systems
through modeling and actuation appears to be an emerging research area with high potential for
improving comfort and energy savings.

2.2 Occupancy

It is tautological that an occupant can only exhibit behavior or preferences if they are physically
present in a building zone. For this reason occupancy models are considered the core of any
holistic occupant behaviour model [25]. Generally there are two types of occupancy prediction
models: presence and occupancy level (or simply occupancy). Presence refers to if there is at
least one person in the zone, and occupancy level refers to the number of occupants within the
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zone. In the case of individualized prediction models the occupancy presence and level of a
single occupant are equivalent. Models developed for either purpose are related and often similar
but some approaches are more suited to one or the other. Occupancy is typically considered
dependent on only time and current occupancy (often using the Markov property). Often it is
assumed that occupancy has a diurnal and weekly cycle. Additional information from specific
occupants, such as their calendar appointments, could also be useful for improving individualized
models though this raises privacy concerns. Some methods also target simulation rather than
prediction, for example the queuing method in [73] with adaptive breakpoint selection seeks
to recreate key average statistics of the occupancy level in simulation and thus do not use the
current occupancy state as an input.

In a recent review Dong et al. show that occupancy models have applications in: energy per-
formance analysis, architectural design analysis, safety design analysis, and building operation
(including BEMS) [43]. Dong et al. also score the popular methods for applications in building
operation, including Markov process, random sampling, agent-base, and machine learning meth-
ods. Markov process methods are the most widely implemented with the lowest model complexity
and data requirement. Additionally they have roughly the same accuracy as higher complexity
models making them attractive for implementation. Dong et al. [43] conclude that issues with
validation and scalability are holding back adoption of predictive models into practice. By this
they mean that a specific model cannot be manually developed and validated by experts for each
BEMS economically. This outcome means machine learning methods are increasingly important
for achieving valid models for each building in a scalable way. Though machine learning methods
have only recently been investigated and are not widely implemented. Another barrier to valida-
tion is lack of standard data sets and data availability. Current field data sets are typically short
in duration or have small sample sizes, they may also use different ground truth measurement
technologies.

Occupancy detection has recently seen improvements in sensing technologies, such as deep learn-
ing video feed occupant counting and passive radio-based techniques using mobile phones (WiFi,
Bluetooth, GPS, etc). These are in addition to the commonly deployed method of passive infra-
red (PIR) motion sensing [154]. From these sensing developments Wang et al. [157] present
several state of the art real-time occupant spatial tracking methods and their own k-Nearest-
Neighbors based classification algorithm to spatially resolve an occupancy distribution within a
specific building zone using measurements on a Bluetooth Low Energy (BLE) network of occu-
pant mobile phones and a unique media access control address (MAC address) as an identifier.
From this work it can be seen that high resolution real time individualized occupancy data is
attainable with a low cost sensing network and without the privacy concerns of image based
sensing. These breakthroughs in economical individualized occupancy sensing make the use of
individualized occupancy models possible in practice once a scalable model and sensing frame-
work can be validated.

2.3 Occupant Internal Heat Gains

The heat given off by each occupant due to their metabolism can be quite large in densely
occupied zones. Ahmed et al. [3] gives a figure for office buildings of 118 W per person from
field data, which is broken down into 44.1 W convective heat 38.7 W radiant heat 25.9 W latent
heat and 9.7 W from sweating. This is close to the standard values for office buildings reached
by multiplying a typical metabolic rate of 1.2 (58.15 W/m2) by the average Dubois body surface
area of 1.80 m2) to get 125 W/person. Considering just the sensible heat in our building model
gives an average value of approximately 83 W/person. This constant value can be used as a
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coefficient to the occupancy for each occupant because the contribution to the zone heating is
only large when many occupants are in a zone and thus the average accuracy is more important.
The value could in theory be modelled and estimated for each occupant individually in a similar
way to the on-line methods for estimating occupancy or thermal preference. The uncertainty
would however be large due to uncertainty in activity and the relative impact would be low, i.e.
a difference on the order of 100 W in heat gains for an office thermal zone with several occupants.
This model may be useful in more advanced applications such as diagnosing faults in the heating
system, but an implementation would likely be difficult and should only be attempted after
reducing uncertainty in more impactful areas, such as the building construction. Consideration
of the occupant internal gains in this work is largely to demonstrate a predictive model of a
disturbance that is directly interlinked to the individual on-line occupancy models, in this case
with a simple constant scalar of 83 W/person.
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Chapter 3

Thermal Comfort Prediction

The predictive thermal comfort models surveyed in [48] typically predict based on the PMV or a
modified version of the PMV (e.g. adaptive PMV [36] and extended Predicted Mean Vote [50]).
To avoid the issues mentioned in Section 2.1 thermal comfort in this work is considered through
thermal preference and in a probabilistic sense. In particular the probability of an occupant
having a thermal preference (TP ) to be warmer, P (TP = warmer), or cooler P (TP = cooler).
This is taken to be a function of thermal state Xz,k in some zone z at some time step k. The
goal of this prediction is to add on-line estimates of P (TP = warmer ‖ Xz,k) and P (TP =
cooler ‖ Xz,k) into the objective cost function of the MPC controller as discussed in Section 5.2.
The benefit being increased accuracy in approximating the relative cost of a given thermal state
to the comfort of the occupants within a given building zone for all given time steps.

The on-line learning problem is quite different from conventional off-line parameter estimation
(also called machine learning) in that both inference of the model and forward prediction run
continuously within a feedback loop. Newly observed data is used to update the model in real-
time for the prediction at the next time step. The algorithm developed within this section is for
an on-line implementation which is proposed to improve feedback latency compared to off-line
models which would need to be retrained (for example with the neural network models mentioned
in [48]) as part of a separate process running at a much lower frequency than the controller. The
other benefit of on-line models is continuous learning in constant time and constant (or-near
constant) memory and storage. Again as compared to off-line models which (in most cases)
require the full history of observations to be stored and retrained upon at each iteration. The
use of a Bayesian model is desirable here because it allows for explicitly 1) encoding a specific
model structure from theoretical understanding of the problem, 2) exploiting model parameters
prior distributions from existing experimental data, and 3) updating of the model parameters
when new observations are made. This is an intuitive way to incrementally improve the accuracy
of the predicted posterior distribution of the model as more measurements are made, and in our
case as more occupant feedback is given. Also called Bayesian inverse modelling (for modeling
the model parameters given the observed output), this follows directly from Bayes theorem where
given observed data Y , model M , and parameters Θ

P (Θ ‖ Y,M) =
P (Y ‖ Θ,M)P (Θ ‖M)

P (Y ‖M)
(3.1)

When considering Bayesian inference methods for approximating otherwise intractable prob-
ability distributions there are generally considered to be two families of methods, variational
inference and Markov chain Monte Carlo (MCMC). Variational inference is an optimization

16



based approach that is well suited for large data sets [20]. MCMC on the other hand is better
suited for small data sets and has been a foundational numerical tool in statistics since the work
of Metropolis et al. [97] and the famous Metropolis-Hastings algorithm [61, 62]. In our case the
data sets are actual human thermal preference votes which will always be small for any given
individual occupant, on the order of 100 to 1000 votes (assuming on average 1 to 5 votes per week
and a conservative lifetime of 20 years). In reality a lower number of thermal votes per occupant
can be expected because as the system improves each occupant would be less incentivized to
provide feedback and correct the model. Due to the limited data for a specific occupant lever-
aging prior information is required to generate accurate individual models. Collective learning
approaches as in [63] show potential but an on-line implementation does not appear practical due
to increased model updating burden. A method to cross-update occupant models based on-line
feedback from other occupants is a promising area of future work. Here the construction of the
starting prior distribution for each occupant model is simply considered from pre-existing data
from the same building.

3.1 Hierarchical Bayesian Model

Hierarchical Bayesian models are prevalent in learning with small data, for example in recom-
mender systems [175]. In previous work (Semester Arbeit) it has been shown that hierarchical
Bayesian models are promising methods for learning theoretically motivated thermal preference
models for existing data sets of specific occupants. This was done by extending the fully Bayesian
approach proposed by Lee et al. [87] for inferring the thermal preference of an individual using
as a combination of several common cluster models. This method uses a Linear Discriminant
Analysis (LDA) or multinomial logistic regression on a modified PMV occupant heat balance.
They add underlying additional parameters to the PMV heat balance (see Appenix A.1) for
inter-personal physiological and psychological differences. The LDA then estimates the mutually
exclusive probabilities of the occupant having each possible thermal preference (TP ). The TP
being a categorical dependent variable y, and the heat load L(Xz,k,θ) being the class parameter,
where Xz,k is the observed independent variables (thermal state), θ are the heat balance param-
eters, while µ and σ are model parameters for classification, representing each class (TP ) mean
heat load on the occupant and standard deviation respectively. The LDA can then be rewritten
as

P (yi = TP |Xz,k,θ,µ, σ) =
exp

(
− 1

2σ2 (L(Xz,k,θ)− µTP )2
)

∑3
c=1 exp

(
− 1

2σ2 (L(Xz,k,θ)− µc)2
) (3.2)

It should be noted that the underlying PMV heat load function is non-linear which complicates
the implementation. The hierarchical Bayesian model can then be conditioned on the observed
data with MCMC to approximate the probability distribution of each model parameter. Lee
et al. [87] implement a combination of shared cluster models for certain model parameters
instead of learning a model for each occupant independently. In this work we choose to in-
vestigate independent models for each occupant instead and use a different heat load function,
the ATHB, which has been developed specifically to account for the physiological and psycho-
logical differences between occupants. Recent work by Lee et al. extends application of these
thermal preference models with approximate dynamic programming (ADP, also referred to as
reinforcement learning) [85] and simulation analysis [86].
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3.2 Heat Load Function

The heat load function L(Xz,k,θ) has the physical interpretation as is an estimate of the thermal
energy flow across the skin of an occupant to the thermal zone they are in. This base function
is the steady state heat balance from the PMV method and is described in greater detail in
Appendix A.1. The main components are the internally produced body heat (metabolic rate,
M) and heat loss (hloss(Xz,k,θ)) to the environment through all heat transfer modes. The
mechanical work (W ) done by a person in an office is typically negligible.

L = (M −W )− hloss(Xz,k,θ)

hloss = hradiation + hconvection + hexvaporation + hrespiration + hsweat
(3.3)

For our predictive thermal preference model this function is extended using the ATHB framework
developed by Schweiker et al. [138] as described in Section 2.1. The key difference being that the
original ATHB uses the measured metabolic rate, operative temperature, and air velocity. The
extension in this work uses regression of both clothing and metabolic rate as adapted parameters
to further simplify the implementation. The adapted clothing is simply a linear function of the
outdoor running mean temperature Trm,

CLOadapted = θ1 + θ2Trm (3.4)

While the adapted metabolic rate is a function of the running mean outdoor temperature and
the current indoor temperature,

METadapted = θ3Trm + θ4Tin + θ5 (3.5)

This gives a linear regression model for clothing and metabolic rate with each parameter (θ)
having a physical interpretation. All model parameters in Equation 3.2 (expect σ) are assumed
to be Gaussian distributed with mean values following from [138] and [139]. An inverse gamma
distribution is assumed as prior for σ and a normal distribution for µ with class means taken to
be at 3.5, 0, and -3.5 respectively, with an almost fixed no-change mean at 0 as proposed in [87].
The priors are given relatively large standard deviations, on the same order of magnitude as the
mean, because uncertainty is high and to allow MCMC to explore the posterior more easily. The
prior distributions for each parameter are given below.

P (θ1) ∼ N (1.25, 0.1)

P (θ2) ∼ N (−0.03, 0.03)

P (θ3) ∼ N (−0.0178, 0.02)

P (θ4) ∼ N (0.0032, 0.003)

P (θ5) ∼ N (0.283, 0.3)

P (µ0) ∼ N (3.5, 1)

P (µ1) ∼ N (0, 0.01)

P (µ2) ∼ N (−3.5, 1)

P (σ) ∼ InvGamma(2, 0.5)

(3.6)
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While these priors may seem quite restrictive they will have a declining effect as they are condi-
tioned on the observed data.

3.3 On-line Bayesian Parameter Estimation

A drawback of using a conventional MCMC approach, or any off-line inference method, is that
the model must be retrained with all observed data in order to incorporate information from new
observations. The number of observations being potentially unbounded for long-running systems
this becomes quite problematic for run time and storage with even efficient algorithms running
in O(N). On-line inference differs from typical off-line methods by iteratively inferring the
sequence of posterior distributions given each new observation Yk in the same ordered sequence.
A more efficient approach with a recursive Sequential Monte Carlo (SMC) or particle filtering
implementation is explored in this section. Doucet et al.[44] frames this problem using Bayes
theorem as a formulation of the posterior distribution of the model parameters for Markovian,
nonlinear, non-Gaussian state-space models. Considering Yk = TPk as the observation (being
implicitly conditional on the thermal state Xk), and taking the Bayesian model parameters
{θk, σk,µk} to be simply Θk. The notation for indexed sequences such as {Y0, Y1, . . . , Yk} can
then be denoted by Y0:k. One can now use the formulation introduced by Doucet et al. to express
this problem conditional on all observed data as

p(Θ0:k ‖ Y0:k) =
p(Y0:k ‖ Θ0:k)p(Θ0:k)∫

p(Y0:k ‖ Θ0:k)p(Θ0:k)dΘ0:k
(3.7)

6

The integral in the denominator (normalization factor) is intractable analytically but can be ap-
proximated numerically using MCMC. The recursive formulation for the probability of the model
parameters given the next (k+1) observed state uses the Markov property that p(Yk+1 ‖ Y1:k) =
p(Yk+1 ‖ Yk) and is

p(Θ0:k+1 ‖ Y1:k+1) = p(Θ0:k ‖ Y1:k)
p(Yk+1 ‖ Θk+1)p(Θk+1 ‖ Θk)

p(Yk+1 ‖ Yk)
(3.8)

If the posterior density of model parameters at every time step, p(Θk ‖ Y1:k), is Gaussian, then it
can be shown analytically that a Kalman filter is the optimal algorithm [9, 44]. However, for this
to be true the transition sequence Θk = fk(Θk−1, Vk−1), and its measurement function, must be
known linear functions and the i.i.d process noise Vk−1 must be Gaussian. Unfortunately there
is no reason for these to be generally true in the case of thermal preferences. It can be seen from
the Monte Carlo estimates of the model parameters that some parameters exhibit multi-modal
and skewed behavior, which are not generally well approximated by Gaussian distributions [9].
Alternatively considered in [9] are grid search methods. These are optimal for cases with a
discrete and finite state space, which again is not the case with thermal preference. However
a bounded discretization could be implemented as an approximate grid-based method. Other
suboptimal algorithms such as extended Kalman filter (EKF), unscented Kalman filter (UKF),
and particle filters will work in general non-linear case. The EKF locally approximates non-
linearities with Taylor expansion while the UKF uses the non-linear function, but the resulting
density function is still approximated by a Gaussian. Particle filtering techniques, also known as
SMC, do not approximate the resulting posterior with a Gaussian and are the family of methods
focused on in the remainder of this section.
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Kantas et al. [77] give a review of off-line and on-line particle filtering methods for state es-
timation, giving methods for on-line maximum likelihood parameter estimation and Bayesian
parameter estimation. They also address particle degeneracy as the key issue with on-line meth-
ods of Bayesian parameter estimation. This is due to the accumulation of relative weighting by
likely particles after each successive generation leading to effectively only one particle remaining
(also called sample impoverishment in [8]). One potential way to by-pass this issue is through
fixed lag particle sampling (i.e. only incorporating particles in a sliding window). Another less
restrictive method is MCMC steps between particle iterations, which is later employed in the
implementation.

Kantas et al. denotes the sequence of posterior distributions of the model parameters as
{pΘ(X0:k, θ ‖ Y0:k)}k≥0 [77]. This notation follows the convention that pΘ(z) = p(z ‖ Θ) is
the marginal density of some stochastic variable z conditional on Θ. They propose using an aux-
iliary particle filter to approximate the kth iterate of the sequence by sampling particles {Θi

k}
distributed by

p(Θ ‖ Y0:k) ∝ p(X0:k−1,Θ ‖ Y0:k−1)qΘ(Xk, Yk ‖ Xk−1) (3.9)

For the recursive formulation p(X0:k−1,Θ ‖ Y0:k−1) is approximated by the previous iteration
particles. MCMC can then be used to combat particle degeneracy by moving all the particles in
the parameter space proportional to the posterior and increasing diversity. The SMC2 algorithm
proposed in [30] for example uses MCMC steps and importance resampling for steps in the Θk

dimension, while internally using similar particle filters in the state space.

Minson et al. [100] propose a similar algorithm for Bayesian inference of model parameters called
cascading adaptive transitional Metropolis in parallel (CATMIP). This algorithm combines, 1)
importance resampling, 2) MCMC, and 3) transitional MCMC [29]. The CATMIP algorithm
has been developed in particular to handle multi-modal distributions and additionally can com-
pute a likelihood estimate for each particle which makes it quite attractive for implementation.
As mentioned previously the importance resampling and MCMC steps between particle filtering
steps are to treat particle degeneracy. Transitional MCMC additionally uses a simulated an-
nealing approach to improve MCMC sampling efficiency [29]. This is done by slowly increasing
the difference between the prior and sampled transitional distribution (instead of directly sam-
pling the posterior) during MCMC. The transitional distribution is annealed exponentially in
m steps towards the target posterior with f(Θ ‖ Y, βm) ∝ p(Θ)p(Y ‖ Θ)βm . Where βm is the
annealing factor that is calculated adaptively to keep the difference between f(Θ ‖ Y, βm) and
f(Θ ‖ Y, βm+1) small.

This allows for the MCMC sampling to progress much more efficiently by rejecting far fewer
samples. The transition time required is proportional to how informative the new data is, and
thus how different the posterior and prior are. In the case of on-line learning the transition allows
for faster MCMC sampling, typically in few transitional steps (less than 10). This CATMIP
algorithm has been used in other Bayesian inference applications for planetary surfaces [83]
and building seismic assessment [49]. The CATMIP algorithm has been grouped within the
family of sequential tempered MCMC (STMCMC) algorithms in [26], while the authors there
note it appears to still have some issue with sample degeneracy and propose an incremental
improvement.
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3.4 Algorithm Implementation

The thermal preference on-line learning algorithm is implemented in Python using the proba-
bilistic programming framework PyMC3 [132]. The steps are detailed in Algorithm 1 below and
explained in this section. The initialization step starts with preprocessing by extracting all data
from a given building excluding a specific occupant. The RP-884 database [37] is used for the
simulation experiments. A prior model is generated by conditioning the hierarchical Bayesian
model (described in Section 3.1) using the CATMIP [100] algorithm (which is also used for on-
line learning). Metropolis-Hastings MCMC was tested for generating the prior model though
there was no improvement in performance and the computation time was much longer so the
results reported are for the case using CATMIP. In the case that the prior model is generated
using the Metropolis-Hastings MCMC sampling or a different technique that does not yield n
particles (not the case when using the CATMIP), it is sampled n times to generate n particles as
mentioned in [8, 9, 100]. Another possible initialization technique being model parameter mean
averaging from a large data set as described in [173].

The current thermal state and occupancy state for each occupant is then polled. If the occupant
is currently in the building then their true preference model is polled for an observed TP . If
TP = no change then the thermal preference and state are stored in a buffer (Ybuf , Xbuf ) and no
update occurs until a change is preferred (i.e. TP 6= no change). This is a simple way to make
it so the system does not update the model and cause a change if the occupant responds that
they prefer no change. Only updating the model on-line when a change is preferred also reduces
the computational workload significantly. It is also anticipated that TP = no change could
be encoded for a time step in which no feedback is given. The on-line update then runs on all
states and temperature preferences in the buffer and afterwards the buffer emptied. Interestingly,
because the on-line algorithm only requires storage of the current particle states, the observation
data can be deleted from memory entirely after exiting the update buffer. The first step of the on-
line update is to take a kernel density estimate of the previous iteration particlesK(Θ ‖ {Θ̃}i,k−1).
The density estimate is only used as the starting transitional distribution (a MCMC proposal
distribution) within the CATMIP algorithm. The previous iteration particles, {Θ̃}i,k−1, become
the samples of the Bayesian prior instead of sampling from a prior distribution. The rest of the
CATMIP algorithm follows as described by Minson et al. in Table 1 of [100]. The number of
particles was set to 100, more and less particles were tested though the error was not improved
and using a relatively low number of particles keeps computation time low. Running the CATMIP
algorithm also produces a likelihood estimate for the updated particles, the maximum likelihood
estimate is then selected to be the updated model parameters. The on-line thermal preference
prediction model uses this set of parameters until a new preference from the occupant is observed
and the the on-line model inference algorithm runs again.

3.5 Simulation Analysis

Models for 15 emulated occupants are learned on-line as described in the previous section within
simulation experiments for a three zone building being controlled by MPC minimizing the prob-
ability that occupants have a thermal preference (i.e. TP 6= no change). The details of the
simulation experiments can be found in Section 7.1. The mean absolute error (MAE) conver-
gence of on-line learned models to the ground truth model in simulation can be seen in Figure 3.1
below. In this figure each line represents the MAE in prediction of the three thermal preference
classes (TP = want warmer, TP = no change, TP = want cooler) for an individual occupant
thermal preference model.

21



Algorithm 1 On-line Thermal Preference Model Inference
1: ns← number of particle samples
2: np← number of occupants
3: XRP884, YRP884 ← load preprocessed RP884 database
4: p(Θ)← prior parameter distributions from section 3.2
5: k ← 0
6: for i in 1:np do
7: Xi,0 ← state data for same building minus occupant i data
8: Yi,0 ← thermal preference vote data for same building minus occupant i data
9: {Θ̃}i,0 ← p̂i,0(Θ ‖ Xi,0, Yi,0) ∝ p(Θ)p(Xi,0, Yi,0 ‖ Θ) from [100]

10: Θ∗
i,0 ← argmax

Θ
log p({Θ̃}i,0)

11: end for
12: while on-line do
13: k ← k + 1
14: for i in 1:np do
15: Xi,k ← current thermal state
16: Oi,k ← current occupancy state
17: if Oi,k is in building then
18: Yi,k ← poll occupant preference
19: Ybuf ← (Ybuf , Yi,k)
20: Xbuf ← (Xbuf , Xi,k)
21: if Yk,i 6= no-change then
22: q(Θ)i,k−1 ← K(Θ ‖ {Θ̃}i,k−1)
23: {Θ̃}i,k ← p̂(Θ ‖ Xbuf , Ybuf )i,k ∝ p̂({Θ̃}i,k−1) · qΘ(Xbuf , Ybuf ‖ Xk−1) from [100]
24: Θ∗

i,k ← argmax
Θ

log p̂({Θ̃}i,k)

25: Ybuf ← ∅
26: Xbuf ← ∅
27: end if
28: end if
29: end for
30: end while
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Figure 3.1: Mean absolute error (MAE) of three thermal preference classes (want warmer, no change, want
cooler) for each prediction in sequence from on-line learned model during simulation of building with 15 occupants.
Each colored line represents the MAE for an individual occupant model.

Models with high initial MAE quickly reach lower MAE, however MAE may increase from
one prediction-observation-update iteration to the next. This is in part due to the sampling of
observed preferences from the ground truth distribution, which may give unlikely preferences for a
single observation and cause a shift in the wrong direction to the model parameters. Additionally
there is the problem of non-persistent excitation, in that the observed thermal states and observed
preferences are biased towards near the maximum of TP = want no change. This is because the
controller keeps the thermal state within this region, causing occupants to have the majority of
observations for TP = want no change and one of the two other preference classes (i.e. either
TP = want warmer or TP = want cooler). Reducing the error for the third class cannot be
accomplished because it is effectively never observed. The convergence of the on-line models
can be seen to converge more qualitatively for each class in cases such as in Figure 3.2 below.
The mutually exclusive probability of each temperature preference class given a fixed relative
humidity and running mean outdoor temperature (50%, and 10.0 ◦C respectively) is shown in
these figures. Blue represents TP = want warmer, green is TP = want no change, and red is
TP = want cooler. Each class is represented The initial prior, Figure 3.2a, based on existing
data from other occupants in the same building is updated once to the model in Figure 3.2b,
then several more times to reach Figure 3.2c. This model is close to the ground truth model
Figure 3.2d assumed in the simulation. However not all models converge in simulation to near
the true model due to the bias in sampling as previously mentioned.
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(a) Prior model (b) On-line model, update 1

(c) On-line model, update 14 (d) True model

Figure 3.2: On-line learning of thermal preference model for specific occupant from sampling of the true model
d) at the simulated thermal states. Each faint colored line represents one particle and the black line the selected
maximum likelihood particle. a) the initial prior from other occupant data in the same building, b) the first
update given an observation from the occupant, c) the fourteenth such update, and d) the true model that was
being sampled from to generate the observations used to update the model.
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Chapter 4

Occupancy Prediction

In this section an on-line learning algorithm is developed to treat the issue of scalability for
occupancy modeling outlined by Dong et al. in [43]. Providing a scalable algorithm to creating
an occupant and building specific model being the goal. This on-line learning method can start
from a conservative prior, for example a schedule in agreement with general occupancy modelling
practices, and continuously update into an increasingly specific model as occupancy data is logged
for each occupant for the building in question. Off-line models have been demonstrated to be
successful towards similar goals, such as the Markov based feedback recurrent neural network
(M-FRNN) proposed by Wang et al. [158]. Their implementation predicts occupancy level in
a single zone using WiFi and is compared with a classic Markov and CO2 based method. The
classic Markov model has transfer probabilities fit on data of the zone occupancy with observed
conditional probabilities. The M-FRNN additionally uses temporal feedback and predicts a
unique Markov transition probability matrix for each occupant (identified by mobile phone MAC
address). They conduct real world experiments with video based ground-truth data and report
mean absolute percentage error in occupancy level (in step-ahead prediction) of 33.5% for the
Markov and 36.0 % for the M-FRNN. In this work a different Markov transition matrix fitting
approach is considered.

Li and Dong have developed the UTSA Markov model [88, 89] for short term prediction of both
presence and occupancy level in residential and commercial buildings with direct applications in
MPC. In [89] the authors validate their method using experimental data from four offices and
additionally compare the prediction performance to existing methods of: inhomogeneous Markov
chains, hierarchical probability sampling, ANN (artificial neural networks), and support vector
regressions (SVR). They compare model the correctness of the model in prediction modes of one
step ahead (15 minutes, 30 minutes, and 1 hour) and one day ahead (24 hours in steps of 15
minutes and 1 hour). Their one-step ahead prediction results show their UTSA Markov model
to outperform the existing models with correctness for each office ranging from 68.0% to 87.6%,
with an average correctness of 79.6%. This model is also reported to have the lowest RMSE and
MAE in step-ahead prediction of the occupancy level. The authors also compare models with
respect to their ability to predict the key statistics of first arrival, last departure, occupancy
duration, and inter-departure time of occupants.

The UTSA Markov model is chosen for implementation in this work because the experimental
results in [89] show it as most performant in step-ahead prediction, which is most important for
MPC, and additionally because it can accurately reproduce statistics found in experimental data.
In this work the UTSAmodel is extended for use in predicting the occupancy pattern of individual
occupants in a building with multiple zones and in an on-line learning implementation. The
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difference between zone occupancy level prediction and individual occupant presence prediction
is that data is not aggregated at the zone level and the occupancy of each occupant is predicted
independently. This has some advantages and disadvantages normally associated with agent
based models. In the case that not many unconsidered visitors enter the building, occupant
conservation (enforcing that each occupant can only be in one zone at a time) can help short-
term predictions. However, this may be unable to account for periods of high occupancy such
as meetings or events without incorporating correlations between occupants, as considered in
[158].

4.1 Inhomogeneous Markov Chains

Markov processes are inhomogeneous if the transition probabilities vary over time. Wang et al.
present this method for occupancy simulation in [155]. The formulation used within this work is
for discrete occupancy states Oi,k of occupant i at time step k. Thus the probability of occupant
i transitioning from current state Oi,k = l to next state Oi,k+1 = j for a first order Markov chain
using the Markov property is given by

P (Oi,k+1 = j ‖ Oi,k = l, Oi,k−1, . . . , Oi,0) = P ilj(k) (4.1)

Where P ilj(k) is the state transition matrix for time step k. This method is proposed for sim-
ulation as extension to widely used Markov methods and has been implemented in the obXML
toolset [65]. Interestingly, using such a time varying sequence of Markov transition matrices
for each individual occupant yields something closer to an agent-based model. Inhomogeneous
Markov chains allows for the use of absorbing states, which have no transition from them to
other states [155]. These are simple ways to account for first arrival and last departure behavior
which is most important for pre-heating and cooling of buildings. Similarly, changes in behavior
such as leaving ones office during lunch time or for meetings in other offices. These changes are
similarly discretized to occur at a specific time step.

For a given building we define z possible occupancy states to be each of the building thermal
zones and taking the z = 0 to be anywhere outside the building. The occupancy prediction at
time step k+ 1 for an occupant i is the product of the current state at k and the current Markov
transition probability matrix P ilj(k), which has following structure

P ilj(k) =


p00 p01 . . . p0z

p10 p11 . . . p1z
...

...
. . .

...
pz0 pz1 . . . pzz

 ∈ Rz+1×z+1 (4.2)

Each additional time step can be predicted by successive matrix multiplication by the Markov
transition probability matrix for that time step. The UTSA Markov method is an algorithm to
fit an inhomogeneous Markov chain to occupancy data using a fixed lag time frame. In order to
determine at which time steps the Markov transition matrices change for each occupant, which
is central to the method design, a change point detection algorithm is employed.

4.2 Change Point Detection

Li and Hong [89] propose the use of the Relative unconstrained Least Squares Importance Fitting
(RuLSIF) change point detecting method introduced in [90]. The core of RuLSIF is estimating
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the relative density ratio of two density functions using a Gaussian kernel (fit with least squares
minimization) [168]. These two probability density functions for our application are from a daily
occupancy profile (see 4.3.2) k − n steps backwards, Pk−n:k, and k + n steps forward, Pk:k+n,
from the current step k. A maximum divergence between these two density functions therefore
indicates a change point, i.e. the point at which the densities with forward data diverge the
most from densities with backward data. A symmetric divergence score called the alpha-relative
Pearson (PE) divergence defined as PEα(Pk−n:k ‖ Pk:k+n) + PEα(Pk:k+n ‖ Pk−n:k) is used as
proposed in [90]. This incorporates a linear combination of the divergence in either directions
with coefficient α, and additionally bounds the density ratio from above by 1/α (in the case of
Pk:k+n = 0) [90]. This produces a change point score for each point which is itself computed in
a sliding window over the time series. The change points are taken to be the local minima and
maxima of the approximated symmetrized PE divergence curve as in [89]. An example of the
change point score with the minima and maxima highlighted is shown in the third chart from
the top (second from the bottom) in Figure 4.1.

4.3 Algorithm Implementation

In this study the synthetic simulation data is generated with a similarly structured inhomo-
geneous Markov chain with absorbing states and inter-zone transition probabilities which is
predetermined for each occupant and then learned using the UTSA Markov model previously
mentioned [89]. The occupancy prediction on-line learning algorithm is implemented in Python
code. An example of the input and output from this algorithm is given below in figure 4.1 and
described in detail in this section. The structure of the algorithm is defined by the following steps:
1) Initialization, 2) Exponentially weighted daily profile, 3) RuLSIF change point detection, and
4) Fitting Markov transition probabilities. Each step is described in the following subsections.
A pseudo-code implementation is presented in Algorithm 2.
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Figure 4.1: Input (top) and output of occupancy prediction model (bottom) showing exponentially weighted
moving average daily occupancy profile (second from top) and changepoint scoring and detection (third from top).

4.3.1 Initialization

To start with the initialization parameters, Li and Hong [89] use a 10 day sliding window for step-
ahead prediction and a month sliding window for day-ahead prediction. Here only synthetic data
is used so any parameter tuning is not meaningful, such that wherever possible the parameters
of [89] are used. The number of days, nd, used in the sliding window is 30 for up to day-ahead
predictions. The time discretization is by hour so the number of time steps per day, ns, is set to
24.

4.3.2 Exponentially Weighted Daily Occupancy Profile

The occupancy data is binned by time step and day type (weekday or weekend) and an expo-
nentially weighted average is computed within the sliding window of occupancy data OD. The
common exponential moving average formula (1−λ)

∑nd
i=1ODs,iλ

i−1, where 1−λ is the converged
value of 1∑nd

i=1 λ
i−1

, is given here using the explicit exponential weighting to avoid approximation

error when nd is small (called wind-up for exponential weighting). This gives an exponentially
weighted average Ws for each time step s ∈ {0, . . . , ns}. The exponential decay or forgetting
parameter, λ, of 0.8 is used in the numeric simulations.
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Ws =

∑nd
i=1ODs,iλ

i−1∑nd
i=1 λ

i−1
(4.3)

To allow the sliding window of the change point detection (within the sliding window of W ) to
move backwards from the first time step and forwards from the last the exponential weighted
average dataset is extended in the forward and backward direction by appending an offset of
half a day of time steps, ns/2, in either direction. This is equivalent to wrapping the sliding
window values around the same exponentially weighted daily profile, thus extending its index
range. The effect of doing so is later investigated in simulation.

4.3.3 RuLSIF Change Point Detection

The change point detection algorithm also uses a sliding window approach within its own sliding
window. The relative density estimation is taken from this exponentially weighted daily profile
with a forward, f , and backward, b, sliding window step size of 3 time steps each within a sliding
window of 5 time steps. The RuLSIF change point score SCs is computed for each point (i.e.
a total sliding window of 5 steps in forward and backward direction, with three different points
of evaluation for each data point Ws) in this extended range and then only the original range
of the daily profile is extracted. The internal parameters of the RuLSIF method are fit using
n-fold cross validation [90]. The local minima and maxima in the change point score time series
are identified by taking the time step indexes when the first order difference changes sign to the
change points, CP . The RuLSIF implementation is adapted from the work of Daisuke Motoki
[105] based on the software distributed by the Sugiyama-Sato-Honda Lab at the University of
Tokyo [167]. The first order peak detection algorithm used is from the freely available PeakUtils
library [109].

4.3.4 Fitting Markov Transition Probabilities

Each change point specifies the time step at which the Markov transition matrix is predicted
to change. Therefore, a first order Markov transition matrix can be fit on the occupancy data
between each change point and the next change point (i.e. by computing the observed condi-
tional probability). This creates an inhomogeneous Markov chain for the exponentially weighted
average daily occupancy profile. Li and Hong propose an α smoothing factor to increase the
transitions to previously unobserved states and reduce the occurrence of sink states [89]. In our
case where the simulation data is generated with an inhomogeneous Markov chain this α factor
may not improve prediction accuracy but is still included to represent more realistic predictions.
An addition to this transition probability fitting method that aides in prediction on multiple
states is using the base rate of all states (i.e. the total observed occurrence, unconditional on the
previous state) for the transition probabilities when the occupant is in a previously unobserved
state. This is instead of relying on the alpha parameter which will make a transition from the
previously unobserved state to all other states equally likely.

Finally, leave-one-out cross validation (LOO-CV) is used in conjuncture with computing the
conditional probabilities as mentioned above to select a cross validated Markov transition matrix.
LOO-CV splits the data set by day and selects one day which is used for validation. The data for
all other days is used as training data to compute the Markov transition probabilities and each
Markov chain is used to generate one-step ahead predictions on the left-out validation data set.
The Markov chain with the lowest squared error, ε, in prediction is selected for the change point.

29



This is performed between each change point independently to learn the full inhomogeneous
Markov chain on-line.
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Algorithm 2 Occupancy Prediction On-line Learning
1: Initialize: nd← 30 number of days in data set
2: Initialize: ns← 24 number of time steps per day
3: Initialize: np← number of occupants
4: Initialize: λ← 0.8
5: Initialize: f ← 3
6: Initialize: b← 3
7: Initialize: α← 0.1
8: OD ← prior ∈ R(nd)ns×m

9: while on-line do
10: for i in 0:np do
11: OD ← Oi,(k−ns×nd):k ∈ R(nd)ns×m

12: for s in 0:ns-1 do

13: Ws ←
∑nd−1

d=0 ODd(ns)+sλ
d∑nd−1

d=0 λd

14: end for
15: offset← ns/2
16: W ← [Wns−offset:ns,W,W0:offset]
17: for s in 0:(ns×2× offset do
18: SCs ← PEα(P (Ws−b:s) ‖ P (Ws:s+f )) + PEα(P (Ws:s+f ) ‖ P (Ws−b:s)) from [90]
19: end for
20: SC ← SCoffset:ns+offset
21: CP ← extract first order local minima and maxima of SC, from [109]
22: for c in CP do
23: for d in 0:nd do
24: X ← [OD0:d×ns, OD(d+1)×ns:nd×ns]
25: V ← ODd×ns:(d+1)×ns
26: for i in 0:m do
27: for j in 0:m do
28: nij ←

∑
k=0Xk+1 = j ∧Xk = i

29: if
∑m

l=0 nil > 0 then

30: p̂ij ←
nij + α∑m
l=0 nil + α

from [89]

31: else
32: p̂ij ←

∑
k=0Xk = j∑
k=0Xk

33: end if
34: end for
35: end for

36: P̂c,d ←


p̂00 p̂01 . . . p̂0m

p̂10 p̂11 . . . p̂1m
...

...
. . .

...
p̂m0 p̂m1 . . . p̂mm


37: εd ← squared error predicting on V
38: end for
39: d̂← argmin

d
(εd)

40: P̂c ← P̂c,d̂
41: end for
42: return P̂i,k

43: end for
44: end while
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4.4 Simulation Analysis

To compare the applicability of the algorithm during on-line learning it is run for synthetic
occupancy data for 42 days. The occupancy data is streamed by the on-line learning algorithm
such that the sliding window shifts with each new occupancy state and the model updates for
each new observed occupancy state. On initialization there is no pre-existing occupancy data
so a prior needs to be generated. This is chosen to be a conservative occupancy schedule where
the occupant is present in their office (a specific thermal zone) continuously from 6:00 to 20:00
on weekdays, and outside the building otherwise. The initialization parameters number of steps
per day, ns = 24, and number of days in wieghted occupancy profile, nd = 30 are set for
all simulations. This gives a hourly predictions based on hourly occupancy data. A shorter
frequency (e.g. minute time steps) is likely desirable for real world applications. The underlying
algorithm can accommodate shorter frequencies by changing the ns parameter and using input
data at that frequency.

The analysis of simulation results is of importance for validating that adding the offset to the
exponentially weighted daily average occupancy profile improves change point detection. This
is evident upon comparing results for different step-ahead predictions with different offset time
steps. As the prediction horizon grows (i.e. becomes greater than one-step ahead) the MAE
shown in Figure 4.2 is minimal with an offset of ns/2 time steps (ns/2 = offset = 12 in this
case) compared to no offset or other offset sizes. The same trend is observed with the root mean
squared error (RMSE) shown in Figure 4.3). The improvement comes from correctly identifying
when the Markov transition probabilities change. This allows for the correct data to be used to
estimate the transition probabilities between the change points as well, which further improves
the algorithm.

Figure 4.2: Occupancy n-step ahead prediction mean absolute error (MAE) for different offset time steps
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Figure 4.3: Occupancy n-step ahead prediction root mean squared error (RMSE) for different offset time steps

To check the convergence of the on-line learning algorithm from the prior to posterior (conditioned
on the data) the log loss (logistic loss or cross-entropy) is computed for each time step prediction
and true occupancy values. A daily (24 step) and weekly (168 step) moving average of the
prediction log loss is computed for varying n-step ahead predictions to show how the predictions
change with each iteration of the on-line learning algorithm. A moving average is chosen because
the occupancy predictions were heavily dependent on the current state of occupancy and therefore
noisy. The results are shown in Figure 4.4 for the daily moving average log loss and Figure 4.5
for the weekly moving average.

Figure 4.4: Occupancy prediction daily (24 time step) moving average log loss, 12-step offset
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Figure 4.5: Occupancy prediction weekly (168 time step) moving average log loss, 12-step offset

There is a clear reduction in the log loss in the very beginning as more occupancy data is used to
update the prediction model from the prior. As can be seen in the weekly moving average plot the
log loss appears to converge after roughly four weeks (678 iterations). It is also worth mentioning
that the log loss of the n-step ahead predictions becomes lower than one-step ahead. This is due
to the scaling of the log loss being log scaled and the single step predictions possibly being
potentially very wrong while the n-step ahead errors tend to become averaged with successive
transition matrix multiplication. This can be seen in a simple example where ytrue = 1, 0, 0,
ypred,1 = 0.95, 0.0, 0.95, and ypred,2 = 0.7, 0.5, 0.5 which is more averaged. The log loss, which is
defined by −logP (ytrue|ypred) = −(ytruelog(ypred) + (1 − ytrue)log(1 − ypred)), for ypred,1 is 1.02
and for ypred,2 is 0.58. However the MAE of ypred,1 is lower than for ypred,2. In any case the
log loss is used simply to show the relative decrease in prediction errors as the on-line algorithm
iterations increase.
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Chapter 5

Controller Optimization

The optimal control problem (OCP) at the centre of MPC is the focus of this chapter. The
formulation for discrete time MPC is given and a novel cost function for the MPC system is
developed to approximate the expectation of thermal comfort costs to all occupants within all
zones of the building combined with the predicted energy costs of producing a comfortable
thermal environment. This tradeoff between comfort and energy is explored by approximating
the probability function of each occupant individually having a preference to be warmer or
cooler, or preferring no change at all, using the on-line model described in Chapter 3. These
probabilities are also conditional on the occupancy probability of each occupant using the on-line
model described in Chapter 4. The function is then able to value energy costs near the region
of maximum comfort (or minimum discomfort) for all occupants in aggregate proportionally to
the increased probability of occupants preferring to be warmer or cooler. This cost function is
then optimized directly in discrete finite horizon MPC formulation to generate a control sequence
approximating the optimal control sequence.

5.1 Discrete MPC formulation

Discrete time control is common for digitally controlled systems because the sampling of sensor
measurements and computation between actuation signals happens in discrete time (i.e. at fixed
intervals of continuous time). The discrete approximation of continuous time systems used in this
work is the zero-order hold, which simply assumes the system is constant between measurements
creating a piece-wise constant approximation of a given signal. For buildings that have slow
dynamics the discretization frequency can be quite large without introducing large errors. The
typical discrete time MPC formulation from Rawlings and Mayne [126] comprises of a stage cost
l(x(k), u(k)) and terminal cost lN (x(N)) and takes the sum over all time steps (or integral in
continuous time) as

V (x(0),u) =
N−1∑
k=0

l(x(k), u(k)) + lN (x(N)), s.t.x+ = Ax+Bu (5.1)

With the states being measured through y = Cx where C can be the identity matrix if the
measurements are assumed to have no error, which is assumed in this work for simplicity. Possible
extensions of this formulation for measurement errors and stochastic disturbances are introduced
in Chapter 1 of [126]. There are several notable limitations with numerical solving of MPC
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problems, which is typically the only possible solution method [126]. These limitations are 1)
the real system dynamics are only approximated by the system model, 2) the horizon length is
finite instead of infinite, 3) discretization of the system differential equations, and finally 4) the
optimization problem is only solved to within some error tolerance (either due to solving method
or finite precision of digital computation). With care these errors can be made insignificant and
a tractable optimization problem can be constructed to solve for the optimal control sequence
at each time step.

The discrete time optimal control problem can be formulated generally as in Chapter 8 of [126]
for nonlinear systems as

minimize
x,u

N−1∑
k=0

l(xk, uk) + Vf (xN )

s.t. x0 = x0

xk+1 = f(xk, uk), ∀ k = {0, 1, . . . , N − 1}
{xk, uk} ∈ Z, ∀ k = {0, 1, . . . , N − 1}
xN ∈ Xf

(5.2)

where Z is the feasible set representing constraints on xk and uk, and Xf is the terminal set
(Xf ∈ Z), the terminal cost Vf then approximating the infinite horizon cost of the state at
the end of the finite horizon of N steps. One can now see that the state dynamics are no
longer defined with linear transformation matrices and can be any arbitrary function, however
complex functions may easily produce OCPs that are nonconvex and unsolvable given reasonable
computation time. The dynamics in the RC building model are linear but have nonlinear terms
for radiation in the boundary conditions (these could also be linearized). Most important to the
optimization process is the choice of cost function which becomes the guiding function for the
whole system.

5.2 MPC Cost Function

As mentioned the cost function for the MPC system has been chosen to approximate as closely as
possible the thermal comfort costs to all occupants with all zones of the building combined with
the heating and cooling energy costs. Weighting of the increased thermal preference probabilities
caused by only expending energy to get close to the maximum comfort region gives a multi-
objective optimization problem that adequately balances comfort and energy cost. The problem
of deciding on an appropriate weighting is a subjective, cultural, and political endeavour that
is beyond the scope of this project, however a first order estimate of the cost and a sensitivity
analysis shows potential outcomes in the results presented in Chapter 7. It should also be noted
that this model of a static cost for the event of preferring to be warmer or cooler is only effective
near the maximum comfort region. Clearly if the temperature was extremely hot or cold the
cost would be greater than just the occupants all having a thermal preference with a probability
of 1.

At the building zone level the individual thermal preference profiles must be aggregated into
an expectation to compute the zone cost function. This is done by summing the conditional
probability that the occupant is also present in the zone. For example for the case of occupants
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having a preference to be cooler (c = 0) at time k in zone z with state Xz,k the probability is
aggregated based on summing the conditional probability for each occupant i as follows.

Ez,k[TP = cooler ‖ Xz,k, Oi,k−1)] =
N∑
i=0

Pi,k(TP = cooler ‖ Xz,k)P (Oi,k = z ‖ Oi,k−1) (5.3)

The probability of occupant presence is considered to be independent of the thermal state and
presence of other occupants so the conditional probability can be computed by multiplying the
two probabilities as proposed. This produces the After normalization by the number of occupants
the presence-weighted average preference probability distribution P̄z,k(Xz,k, Oi,k−1) is computed
for each mutually exclusive preference class. The expectation however has a bias to condition
zones that have more occupants closer to the maximum comfort region because the relative cost
is lower. A simple way to remove this bias is to normalize by the expected zone occupancy to
give an expected zone thermal profile.

E[Pz,k(TP = cooler ‖ Xz,k)] =

∑N
i=0 Pi,k(TP = cooler ‖ Xz,k)P (Oi,k = z ‖ Oi,k−1)∑N

i=0 P (Oi,k = z ‖ Oi,k−1)
(5.4)

This is different than taking the average of each occupant comfort profile in that it puts no mass
in regions that no individual occupant prefers. This is important because if a single occupant were
to have a vastly different profile (i.e. that it did not overlap with any other occupant profiles),
their profile would not change the maximum comfort region. This is because the profiles being
logistic curves have a maximum of 1, so any portion of overlap between two curves giving a
sum above 1 will always be greater than any single occupant profile. It is however incredibly
unlikely that any true profile would have no overlap. A feedback mechanism allowing occupants
to indirectly (or even directly) control their comfort profile would thus incentivize occupants to
be truthful and not exaggerate their preferences to move the zone temperature towards their
preferred temperature as this would cause their profile to be increasingly outside the maximum
comfort region and therefore neglected from determining the maximum comfort region. An
example of this aggregation for several occupant profiles derived from real world data can be
seen in Figure 5.1 below, the individual profiles are shown in grey lines and the expected zone
profile in black.

37



Figure 5.1: Expected zone thermal preference function (black lines) given the individual occupant preference
functions conditional on their occupancy (grey lines). Also showing approximation with exponential functions
(red and blue lines) and respective errors (dashed lines).

This zone profile is however not convex or guaranteed to be monotonic (in the case that com-
fort profiles are vastly different). An approximation of the curves for E[P (TP = cooler)] and
E[P (TP = warmer)] each with an exponential curve of the form eax+b+c is fit to the maximum
comfort region (i.e. the region of the preference curves near the dashed black line). This is shown
also in Figure 5.1 by the blue and red curves. There error of this approximation is also shown
(dashed blue and red lines respectively), with an error of less than 0.05 for the comfort region
(roughly 18 to 25 ◦C in this case). Crucially, outside of this region the approximation curves are
exponentially higher than the expected profiles. This drives the system into the comfort region
under all circumstances, solving the previously mentioned issues with having a constant ther-
mal preference cost which is only valid within the comfort region (thus under valuing extreme
conditions). Therefore this exponential approximation is not only a reasonable way to improve
computational tractability, but can serve a role in valuing the cost of extreme conditions that
are no longer governed by thermal preference.

The total stage cost can then be defined by summing the preference costs, given the exponential
curves for each zone, and the energy costs over all thermal zones within the building and all time
steps within the horizon as

Nk∑
k=1

Nz∑
z=1

Cc E[Pz,k(TP = cooler ‖ Xz,k)] + Cw E[Pz,k(TP = warmer ‖ Xz,k)] + CEQz (5.5)

Where Cc and Cw are the costs of preferring to be cooler and warmer in CHF/h, and CE is the
cost of energy in CHF/kWh respectively. This can then be augmented with weighting factors lc,
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lw, and lE for sensitivity analysis. To give the full cost function Qk(uk,E[Pk+1(TP )]) for time
step k to be

Qk(uk,E[Pk+1(TP )]) =

Nk∑
k=0

Nz∑
z=1

lcCc E[Pz,k+1(TP = cooler ‖ Xz,k, Oi,k)]+

lwCw E[Pz,k+1(TP = warmer ‖ Xz,k, Oi,k)] + lECEuz,k

(5.6)

This cost function is defined dynamically for each step, i.e. all preference curves are up-
dated on-line, re-aggregated, and re-approximated for each zone. For the simulations in this
work an order of magnitude estimate for the costs is given from an assumption that having
a thermal preference carries a 0.5% decrease in productivity which is multiplied by the me-
dian monthly Swiss salary of 6235 CHF and median of 178 hours worked per month [114].
With the cost of preferring to be warmer and cooler assumed to be the same, Cc = Cw =
(6235 CHF/month)(178 hours/month)(0.5%) = 0.175 CHF/hour are the base thermal prefer-
ence costs considered in this work. There is however no reason for these two costs to be equal in
reality because each building and person has different physiological, behavioural, or psychological
means to adapt to feeling warmer or cooler given a specific situation. For example an occupant
during cold weather may have a sweater and be able to adapt to colder temperatures indoors
(while preferring to be warmer), but in warm weather they would likely not have this sweater
and therefore not be able to adapt to cooler indoor temperatures as effectively. Determining
the relative costs Cw and Cc for a specific situation is considered future work. Some existing
work in this area is presented in [45] to determining the cost of a temperature deviation for a
specific occupant from a preferred temperature through direct compensation in a game theoretic
formulation.

The final formulation of the OCP is given without terminal cost (or with a terminal cost of
Vf = QN (xN , uN )) to be

minimize
x,u

N∑
k=0

Qk(xk, uk)

s.t. x0 = x0

xk+1 = f(xk, uk), ∀ k = {0, 1, . . . , N − 1}
{xk, uk} ∈ Z, ∀ k = {0, 1, . . . , N − 1}

(5.7)

A terminal cost that better approximates the infinite horizon could be formulated however given
a reasonably long finite horizon this will have diminished effect on the first step actuation u∗

0 that
is to be applied. There are no explicit constraints needed on the thermal state as the exponential
cost function creates a relaxed constraint towards the comfort region. Temperature constraints
could be useful in a real world system for defining a minimum unoccupied temperature, for
example to prevent pipes from freezing or otherwise causing HVAC equipment and building
damage. The constraints {xk, uk} ∈ Z, ∀ k = {0, 1, . . . , N − 1} are described in Section 7.1
and the building thermal dynamics xk+1 = f(xk, uk), ∀ k = {0, 1, . . . , N − 1} is detailed in
Chapter 6.
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5.3 Optimization Framework

The resulting discrete time OCP is cast as a nonlinear program (NLP) by compiling the building
thermal dynamics model and on-line learned cost functions with JModelica [4–6] and transferring
the equations to CasADi [7]. The resulting NLP can be algorithmic differentiated by CasADi
and solved with IPOPT [19, 153]. CasAdi is a symbolic dynamic computation graph engine
that implements forward and reverse mode algorithm differentiation to compute a sparse Hes-
sian and Jacobian which is crucial for optimal control problems to be solved efficiently using
IPOPT. CasADi is implemented in C++ but uses the Simplified Wrapper and Interface Gener-
ator (SWIG) [15] to provide a cross-language interface that allows Python code to be embedded
in the CasAdi computation graph. This optimization toolchain can thus handle a variety of dy-
namic optimization problems arising from nonlinear dynamics and cost functions. However if the
building thermal dynamics model can be linearized and the cost function can be approximated
with quadratics (instead of exponential functions used in this work) it would be solved more
efficiently by a quadratic solver. To ensure model equations are twice continuously differentiable
with respect to all of the variables by CasADi the model cannot contain integer variables or
control flows (e.g. if statements or for loops) depending on the time-varying states. Creation of
thermal dynamic models that meet this criteria is facilitated with a simple interface to Modelica
described in Section 6.1.

The JModelica compiler has several preprocessing steps that reduce model complexity includ-
ing model flattening, index reduction, and equation sorting [5]. This analytically propagates
substitutions of known variables of the flattened model to obtain a Block-Lower-Triangle (BLT)
representation of the systems of equations. Solving nonlinear MPC problems with JModelica
has been addressed in [14] and [13]. In particular, the discretization, direct collocation, and
piece-wise constant inputs. The JModelica optimization tool chain is described in detail in im-
plements the direct local collocation method described by Magnusson in [92] and Chapter 3 of
[91]. For direct local collocation discretization the system dynamics are only enforced at the
collocation points. Radau collocation is the transcription method employed, which always places
a collocation point at the beginning of each element. The other collocation points are chosen to
maximize numerical accuracy. Radau collocation has superior stability properties compared to
the alternatively implemented Lobatto or Gauss collocation. Lobatto collocation places points
at both the start and end of each element, which can cause overdetermined equality constraints
because of both DAE and continuity constraints.
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Chapter 6

Building Simulation

There are three types of building models as previously mentioned, 1) physics-based (white box)
models, 2) identification-based (black box) models, and 3) hybrid (or grey box) [144, 159]. The
first are built from first-principles of physics including material properties, geometry, energy
transfer, and knowledge of building systems. The second, also commonly referred to as machine
learning methods, are built from measured input and output data and rely on statistics, function-
fitting, and optimization. The key difference is that physics-based models enforce a specific and
deliberate structure (e.g. conservation derived equations) and in many cases use parameters
taken from available system knowledge. Identification-based methods have no imposed physical
structure, which is generally considered to be part of the problem and is learned during the
training (fitting of correlation function). Implementations can also be hybrids of the two (grey
box models) which seek to reducing trade-offs between each model type [159]. For example in
the case of physical models empirical data can be used to estimate parameters. The line between
these two types of models is contextual, but generally a model can be considered physics-based
if parameters have a physical interpretation and could in theory be measured [144].

The benefits associated with physics-based models are that they are generally well trusted be-
cause they are interpretable (at very least by experts) and can be more accurately extrapolated
from. This is because one can reason about how other data or models would interact with con-
ditions unobserved in the training dataset due to the physics [159]. Identification-based models
however can have much simpler structures that approximate complex models, leading to faster
computation time. Also the ability to learn structure allows for scalable deployment to problems
on periphery of their design domain. In any case without a reasonably large and diverse data set
of heating system inputs and thermal state measurements an identification-based approach can-
not be investigated. For the additional reason of reducing the scope of this work a physics-based
model is desired for both use as an MPC model and to emulate the building response.

For simulation experiments a Modelica based resistance-capacitance (RC) building model is
chosen for implementation. This is because Modelica models have been developed within the
IEA EBC Annex 60 project [163] (now continued in IBPSA Project 1) as the platform for
development of new building simulation software. Specifically the Modelica Buildings Library
[166] is used in this work, itself being based on the base implementation of the Modelica IBPSA
Library. Modelica models also have integration through JModelica [4–6] and CasADi [7] with a
variety of numerical solvers and in particular IPOPT [19, 153] as previously mentioned. An in-
depth analysis of existing building simulation software is presented in Appendix B.1. The MPC
building control is implemented through the MPCPy platform [22] which is a Python interface
for JModelica and Modelica models. An additional tool for constructing the RC building models
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and additional boundary equations has been developed to facilitate developing the simulations
and is described in the next section. This tool also gives an easy way to compose models as
non-linear programs (NLPs) that meet the first and second order derivative requirements of
IPOPT.

6.1 Resistance Capacitance Building Model

The key purpose of the RC modeling tool is to correctly account for all boundary conditions
of the RC building model and generate Modelica models that can be compiled by JModelica,
differentiated algorithmically using CasAdi, and be simple enough to be solved by IPOPT much
faster than real-time in MPC simulation experiments. The boundary conditions include: incident
solar radiation (based on self-shading and surface angle), solar radiation through windows, long-
wave radiation through windows (to sky), effective outdoor air temperature due to long-wave
radiation, outdoor convection, and indoor convection. The thermal zones of the model were
composed of exterior walls (with or without windows), roofs, and floors. Thermal zones could
then be connected to each other using interior wall components. Each component is defined by
simply specifying its physical parameters. A schematic RC network describing the boundary
conditions is shown below in Figure 6.1.

Figure 6.1: Building RC model exterior wall component showing boundary conditions and RC elements.

A similar solution for a Code Templating Tool (CoTeTo) for building models is presented in [151]
that generates Modelica models from building data. This idea is attractive because existing data
can be used to significantly reduce the modeling effort required to deploy MPC if the Modelica
model can be utilized by the controller. The models generated by CoTeTo are however not
suitable for use in the controller optimization as the models are not differentiable using CasADi.
Similarly the RWTH-Teaser tool [127] generates Modelica models of building dynamics, yet these
models also cannot be used for optimization for the same reason. To fill this need a building model
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templating interface to Modelica has been implemented in Python to facilitate differentiable
model generation. This templating interface uses a subset of the Modelica standard library
and Modelica buildings library [166] (as not all Modelica language constructs are supported by
automatic differentiation) to generate the building envelope components (exterior walls, roofs,
floors, and interior walls) that can be simply composed into larger building models. The key to
this implementation is the avoidance of integer variables and control flows depending on time
varying states. The model equations can then be compiled through JModelica and algorithmically
differentiated using CasADi to provide the first and second order derivatives for solving the
resulting NLPs with IPOPT.

The boundary conditions of effective surface temperatures given short and long wave radiation
and effective convections are calculated using the Verein Deutscher Ingenieure (VDI) 6007 guide-
line for calculation of transient thermal response of rooms and buildings as implemented in the
Modelica buildings library [166]. Solar heat gain is calculated based on input weather data from
an EnergyPlus Weather file (.EPW file format) and orientation angles of surfaces (tilt, azimuth,
and latitude). This includes both direct normal radiation and diffuse horizontal radiation both
given in hourly averaged W/m2. The exterior and interior convective heat transfer coefficients
are taken from the literature for the context of low-rise buildings as described in the following
section.

6.2 Parameters of Building Model for Simulation Experiments

The building model geometry consists of three thermal zones 10 m length by 5 m width by 3
m height comprising a single floor low-rise building. The geometry of the building is shown in
Figure 6.2 below with a total floor area of 150 m2. The exterior wall area is 33% windows.
The building has 15 unique occupants with a high density of 10 m2 per occupant. The effect
of doors is neglected and the windows are assumed to be inoperable. Crucially infiltration is
neglected which significantly reduces the necessary heating requirement of the building, making
the resulting case not representative of a real world building. Adding this could be quite simple,
as it could be parametrized with a first order approximation of a thermal conductance. The
goal of the simulation model is however to represent the dynamics of the occupants, each having
unique occupancy and thermal preferences, all with the same averaged internal heat gains from
metabolism of 83 W as mentioned in Section 2.3.

The building model uses parameters representative of relatively new construction within the
existing building stock of Switzerland. The insulation thicknesses are taken to be for Swiss
construction insulation after 1999 as reported in [119]. Each component is modelled thermally in
one dimension with resistances and capacitances for each material layer of its construction. The
physical parameters of each component are specified in two categories, 1) geometric properties:
latitude (rad), azimuth (rad), tilt (rad), area (m2), and thickness (m), and 2) thermal properties:
thermal conductivity (W/m ·K), specific capacitance (W/kg ·K), density (kg/m3), convection
coefficient (exterior and interior in W/m2K), and emissivity. The specific values for the thermal
properties used in simulation experiments are given in Appendix Table B.6 from the ISO 10456
Building materials and products - Hygrothermal properties [23].
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Figure 6.2: Building RC model exterior wall component showing boundary conditions and RC elements.

The windows are modelled after a double clear and low emissivity glazing shown in [55] to
have a solar heat gain coefficient of 0.666 and thermal conductance of 1.99 W/m2.K. This can
be considered roughly typical for existing buildings in Switzerland [119]. The windows are
parametrized as thermal resistors, assuming the heat capacity is negligible. This is a common
assumption as even though glass has a relatively high heat capacity it is thin (e.g. two layers of
13mm) and therefore has relatively small mass. The additional infrared (long-wave) radiation
is also considered in the effective outer surface temperature of the windows as computed using
VDI 6007 as previously mentioned. The infrared emissivity of opaque exterior surfaces of asphalt
(roofs) and plaster (exterior walls) are taken to be 0.9 [93].

External convective heat transfer coefficients are calculated for the average wind conditions (2.19
m s−1 at 146 degrees clockwise from North) using the empirical correlations of free stream wind
velocity for walls and flat roofs of low-rise buildings presented in [46] table 3, which compare well
to existing methods. Given the respective surface-to-wind angles the convective heat transfer
coefficients used are 7.4 W/m2K for North and West facing exterior walls, 6.5 W/m2K for South
and East facing exterior walls, and 8.5 W/m2K for roofs. An extension would be to use the time
series wind velocity to determine these coefficients for each time step in prediction.

The indoor convective heat transfer coefficients from natural convection due to the small temper-
ature difference between an interior surface and zone air. Assuming this temperature difference
to be less than 5K, and with a larger hydraulic radius than the data from [12], an upper bound
can be taken from normalized charts. This gives approximate convective heat transfer coeffi-
cients of 2.7 W/m2K for interior wall surfaces (both surfaces of interior walls and the interior
side of exterior walls), 0.5 W/m2K for ceilings (interior surface of roofs), and 3.2 W/m2K for
floors.
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Chapter 7

Simulation Experiments

Simulation experiments were run as proof of concept testing of the developed building control
framework combining with the on-line predictive models of thermal preference and occupancy to
implement MPC with human-in-the-loop feedback. Real thermal preference data has been used
from the RP-884 database [37] as previously described. A meta-analysis of the RP 884 database
is given in [40] showing distributions of variables within the different studies of the database. This
variance between studies shows limitations of the dataset as a whole, however only small data sets
of individual occupants, and all occupants from the same building (and therefore the same study),
was used here. Specifically for developing ground truth occupant models preference models for
on-line Bayesian updating of the posterior and initialization of models with an informed prior.
These models infer probabilities which are then directly optimized over within the cost function
of the MPC formulation. The results could be somewhat improved in a simulation scenario with
greater variance in preferred temperatures by occupants. This chapter describes the specifics of
the experiment implementation and discusses the results.

7.1 Simulation Setup

As mentioned in Section 5.1, a zero-order hold discretization scheme is used at a frequency of 3600
seconds (1 hour time steps). The weather data used is from the Geneva international weather files
for energy calculations (IWEC). The experiments start on January 6th and have two unoccupied
weekend days for the transient behavior from the initial temperature of all components to reach
an appropriate thermal gradient from the interior zone air to the exterior. Comparisons are
made between the proposed on-line learning controller to the perfect information controller and
a standard comfort temperature (21 ◦C) controller. The perfect information controller represents
an upper bound (with best possible predictive models) while the standard comfort temperature
(21 ◦C) controller represents state of the art MPC (prescribed constant temperature set-point)
with either perfect occupancy prediction or typical occupancy schedules. Each resulting time
series is truncated when compared to other simulation results to allow for the same time frame of
analysis as the minimal duration (roughly 20 days of simulation data). This difference in result
timeseries length between experiments is due to a memory leak in the MPCPy interface with
JModelica that causes simulations to crash after many iterations. Such a bug can be remedied
with some effort but is an implementation detail that does not affect the results and conclusions
presented here.

In MPCPy the number of finite elements for collocation (in JModelica) is set to the total exper-
iment duration divided by the minimum sampling time. This ensures a sample point is at each
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time step. The MPC horizon of 12 time steps each of one hour is used to ensure a horizon longer
than the dynamics of the building which proved to be faster than desired when controlling for
the air temperature in the zones. This causes pre-heating to be of negligible within the simula-
tion experiments, forgoing much of the benefit MPC has over conventional set-point controllers.
However the on-line MPC is only compared to other forms of MPC so this issue is reduces in
the comparisons. Actuation is piece-wise constant between time steps as implemented using
the blocking_factors CasAdi option that only allows actuation switching at these predetermined
time steps. The actuation was chosen to be an arbitrary heat source for each zone independently
with the constraint 4000W ≤ uz,k ≥ 0. This could for example represent panel radiators on the
interior surface of exterior walls below the windows as is common in many offices. As mentioned
in Section 6.2 the building is modelled as a low-rise office building comprising three thermal
zones, each of 50 m2 (total 150 m2) with 3 to 6 regular occupants.

The on-line thermal preference and occupancy are initialized with prior data as described in
Section 3.4 and Section 4.3 respectively. The lack of available data to build thermal preference
models presents a limitation to the simulation results, with only five usable individual occupant
longitudinal data sets in the RP-884 with a reasonable number of data points in each preference
class. This includes four occupants from naturally ventilated buildings in Pakistan [112] and
one occupant from a HVAC conditioned building in San Francisco [134]. With poor geographic
and building type diversity (i.e. naturally ventilated) there is a clear lack of variation between
the occupant data sets. Similarly the occupancy data for each occupant is simulated from the
same Markov chain, only altering the office (thermal zone) which each occupant is to be present
most of the time. With a greater variance in the thermal preferences and occupancy models
the variance of the combined conditional distribution could be much larger. This would allow
for further exploitation of predicted swifts to temperature preferences in a specific zone which
would have allowed for greater energy savings and enhanced comfort (i.e. reduced preferences for
change) with on-line learned individual thermal preference and occupancy models. The resulting
simulation experiments were thus not favorable to exploitation with MPC using individualized
thermal preference or occupancy models and should not be considered as representative of a real
world scenario.

7.2 Simulation Results

The resulting timeseries for the proposed on-line learning MPC controller for the first three weeks
of operation in the first building zone are displayed in Figure 7.1 for on-line learning models of
thermal preference and occupancy (a), perfect models of thermal preference and occupancy (b),
and standard 21 ◦C set-point with typical zone occupancy schedule (c). Emulation results for
other building zones are displayed in Appendix C. The time series shows the outdoor tempera-
ture Toutdoor, preference temperature Tpref (the maximum comfort temperature given the zone
occupancy and ground truth thermal preference models), and the resulting zone air tempera-
ture Tzone. One can see that (a) and (b) operate with Tzone just below Tpref , proportionally
to the thermal preference probability, its cost, and its weighting (lc = lw = 10 are used in
Figure 7.1).

Interestingly because of the neglected air infiltration heat losses the heat from occupants be-
comes quite similar to the input heat from actuation by the controller. Therefore the error in
approximating each individual occupancy pattern causes considerable error to the disturbance
predictions used by the controller, thus producing erratic zone temperatures with the on-line
learned model. This actually works to the benefit of the standard model which over estimates
the occupancy and thus slightly underheats the zone to just below 21 ◦C, which also happens to
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be the energy saving side near the zone optimal temperature. It is partly by coincidence that
the occupant data used for the occupant thermal preference models has an the zone optimal
temperature near 21 ◦C as recommended within Swiss norms as minimum for heating season.
Clearly quite some thought has gone into these norms and in aggregate they are quite accurate.
The nuance is that should specific situations arise where large variance from the norm exist the
MPC framework is able to exploit it to either improve comfort, save energy, or do both. This
is quite important when combining the occupancy and thermal preference models which allows
for constructive interference of the variance between models to produce zone preference temper-
atures well below or above the values typically used for conditioning. This can be observed from
the first, last and lunch hours of the simulations where due to variance in the occupancy the
zone preference temperature changes.
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(a) On-line learning models of thermal preference and occupancy.

(b) Perfect information models of thermal preference and occupancy.

(c) Standard model of minimum 21◦C and schedule based occupancy
model.

Figure 7.1: Simulation results with disturbances to building controlled with MPC using lc = lw = 10 with
(a) on-line learning, (b) perfect information, and (c) standard comfort temperature (21◦C) with schedule based
occupancy, all for first zone of three zone building.
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By varying the weighting of the thermal preference costs (lc and lw) a sensitivity analysis is
performed to outline the pareto front representing the dominant strategies in the tradeoff between
energy and thermal comfort (as measured by thermal preference hours) displayed in Figure 7.2.
It is expected that as time progresses the on-line model methods (circles) would approach the
perfect model costs plus some amount of error. Notably the on-line models may over take the
standard constant set-point MPC controller, even with perfect occupancy models, as shown by
the perfect model results (triangles) being superior to the standard model results (squares).

Figure 7.2: Pareto front of different model types with varied weighting of thermal preference (comfort). Standard
models labeled with occupancy model (scheduled or perfect information) because they do not have a weighting
and only track difference from 21◦C.

In particular the weighting of lc = lw = 5 shows a nice trade off of comfort and energy, repre-
senting a total cost of thermal preference at 2.5% productivity decrease which is well within the
figures mentioned in literature for thermal comfort. The cost comparison for this weighting is
given in Figure 7.3 below.
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Figure 7.3: Cumulative cost (CHF) of energy and thermal preferences over first 20 days of simulation experiments
for lc = lw = 5 with different thermal preference (TP ) and occupancy (O) models.

Notably this weighting provides 14% energy savings over the constant temperature set-point
MPC while providing an improved level of comfort with a slightly smaller expected number
of thermal preference hours. This shows that both improving thermal comfort and reducing
energy consumption is possible with this framework though is not indicative of possible savings
in comparison to currently implemented controllers.

7.3 Conclusions

The concept of the thermobile, a building thermal conditioning controller that adapts to its
environment and changing real thermal demands, has been implemented using MPC and in-
vestigated in simulation study showing promising proof of concept results for improving both
energy savings and thermal comfort. The method uses human-in-the-loop feedback of direct
thermal preference votes (e.g. collected from a mobile phone) and passive presence data from
building occupants to update predictive Bayesian posterior models unique for each individual
occupant. This novel feedback mechanism is a departure from the common consideration in
building controls literature of thermal comfort as respecting prescribed temperature bounds by
formulating determination of those bounds as a feedback loop with every occupant individually.
This is done individually so that the combined variance of the inter-occupant models of thermal
preference and occupancy can be exploited. As simple example, in a thermal zone with two
occupants with different thermal preferences, if one occupant simply leaves for a significant time
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this changes the comfort temperature because the preferences of the remaining occupant are
modeled independently.

Similarly the consideration of the expected comfort cost within the MPC stage cost has been
explored as means of explicitly confronting the tradeoff between energy cost and comfort. This
should by all accounts favor occupant comfort for social and economic reasons and be represented
in the cost weightings. Understanding the marginal costs and being able to optimize within the
approximate comfort region additionally is crucial for defining energy efficient building condi-
tioning systems. Notably it has been shown that aggregation of all preferences of occupants
sharing a space through a thermal preference expectation function yields a tractable optimiza-
tion problem and should align incentives of the occupants to providing truthful feedback to the
on-line learning model representing their preferences. The core conceptual strategy of this con-
troller being to not waste energy heating or cooling occupants who are unlikely to prefer it while
keeping the occupants in the region where they are least likely in aggregate to have a preference
to be warmer or cooler.

It remains future work to test this framework on larger datasets of real world thermal preferences
and occupancy to quantify the opportunity for exploiting the variance between individual occu-
pants thermal preferences and occupancy patterns. The lack of available data to build ground
truth thermal preference models (with only five longitudinal data sets from the RP-884 database
being usable) makes the quantitative results of the simulations of little consequence. It can
however be seen qualitatively from these simulation experiments that should greater combined
variance exist and cause situations of sustained shifts to the comfort temperature the proposed
MPC control framework can indeed exploit them to achieve improved performance over a con-
stant set-point temperature controller, even in MPC with the same predictive models for weather
and occupancy. The implemented on-line learning models have reasonable convergence to near
the ground truth models, however similar validation on larger real world data sets is required to
make claims about performance. Development of new on-line learning algorithms and comparison
to off-line methods is also important future work.
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Appendix A

Thermal Comfort Methods

A.1 Steady-State Heat Balance

The steady-state heat balance from the PMV method [51], or heat load (L) in W is given below
as a function of: air dry-bulb temperature (Tair) in K, mean radiant temperature (MRT ) in
K, air velocity (Vair) in m/s2, relative humidity RH, metabolic rate M and work W in W, and
clothing insulation Icl in clo (1 clo = 0.155 Km2W−1 or R-SI).

L = (M −W )− hloss
hloss = hradiation + hconvection + hexvaporation + hrespiration + hsweat

hradiation = 3.96× 10−8 · fcl · (T 4
cl −MRT 4)

hconvection = fcl · hc · (Tcl − Tair)
hevaporation = 3.05 · (5.73− 0.007 · (M −W )− pa)
hrespiration = 0.0014 ·M · (34− (Tair − 273.15)) + 0.0173 ·M · (5.87− pa)

hsweat = 0.42 · (M −W − 58.15)

hc = max(2.38 · (Tcl − Tair)0.25, 12.1 ·
√
Vair)

fcl =

{
1.0 + 0.2 · Icl, if Icl < 0.5clo

1.05 + 0.1 · Icl, otherwise

pa = RH · 10 · e−((16.6536−4030.183)/(Tair−273.15+235))

Tcl = Tskin − 0.155 · Icl · (hradiation + hconvection)

Tskin = 308.7− 0.0275 · (MET −W )

(A.1)

A.2 Adaptive Thermal Comfort

The adaptive thermal comfort standard, which has been introduced in the ASHRAE 55-2004
and EN15251 standards, uses a linear correlation between a prescribed indoor comfort tem-
perature and the running mean outdoor temperature [110]. The EN15251 standard developed
for free-running buildings by Nicol and Humphreys gives the following relation for the comfort
temperature and outdoor running mean temperature.
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Category Application Limit
1 Spaces occupied by very sensitive and fragile persons ±2 K
2 New buildings and renovations ±3 K
3 Existing buildings ±4 K
4 Only acceptable for a limited periods ±>4 K

Table A.1: EN15251 standard categories of acceptable temperature ranges in free-running mode, from [110].

Tcomf = 0.33Trm + 18.8 (A.2)

The running mean outdoor temperature is defined in [110] as Trm = (1−α)
∑n

i=0 α
iTod−i, where

Tod is the outdoor mean temperature for indexed for each day. The recommended decay rate α is
0.8 [110]. In this work each previous 24 hour period from the current time is considered instead
of calendar date to allow for the temperature of the current day to be considered in a continuous
fashion. In the EN15251 standard the difference from this comfort temperature separates the
level comfort into different categories. The best being category 1 with a difference of +/- 2K.
The categories are given in table X below from the standard.

The ASHRAE scale is used to generate these correlations rather than the MCI considered in this
present work. There are additional caveats about applicability in cold climates where the linear
correlation would prescribe low indoor temperatures. The adaptive thermal comfort standard
implementation has been used in this work as a baseline comparison for predicting thermal
comfort. However because it is only valid for cooling mode (and not in heating mode) the results
are not reported here.
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Appendix B

Building Simulation

B.1 Building Simulation Software

This chapter compares building simulation platforms in 1) ability to simulate whole building
dynamics, 2) ability to integrate third-party models (for occupant behaviour), and 3) capability
for optimization within MPC framework. Notably, co-simulation environments are increasingly
favoured for 2) and 3) that can use the tried and tested methods developed meeting criteria in
1) with open interfaces such as the Functional Mock-up Interface (FMI) standard [21]. For this
reason three types of simulation software are discussed: whole building simulation programs,
building component models, and co-simulation environments.

B.2 Whole Building Simulation Software

Whole building simulation software is typically used in building design for energy performance
assessment. Use in control design or building operations is not often considered. However
these developed models are generally described as being the most accurate in terms of building
dynamics despite recognized performance gaps. The most widely adopted software packages are
compared in table B.1.

As shown in [67] every whole building simulation analysed has a different native input file format
(either text or binary based) making interoperability with other simulation software difficult.
Additionally, proprietary closed source software (e.g. IES VE) only distribute compiled binaries
which dissuade third party model integration or optimization. The modular FMI approach has
been proposed for fixing the interoperability issues [67] yet few packages support it. In co-
simulation one strength of the FMI is that it allows for each model to be evaluated with its
own solver and time constants, thus avoiding stiff ODE systems in coupling and allowing fine
grain performance optimization [137]. The FMI itself is a tool independent standard to support
both model exchange (ME) and co-simulation (CS) of dynamic models using a common API for
specifying the exchange of data during co-simulation. This is implemented with a combination
of XML-files, C-header files, and C-code or just compiled binaries [21].

EnergyPlus is the most common simulation package used in research. It is also quite well known
in industry as well. The BRCM interfaces with EnergyPlus via the Input Data Files (IDF) and
is able to import the thermal model of the building to create a discretized state matrix (A),
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Software Developer FMI support Summary
EnergyPlus1 DoE BTO,

NREL, Lawrence
Berkely Lab

FMI CS 1.02 Most common building simulation
tool. Free and open source3. GUIs
available, e.g. OpenStudio4 and De-
signBuilder5.

IDA ICE6 EQUA Simula-
tion AB

None Commercial closed source

IES VE7 Integrated En-
vironmental
Solutions Ltd

None Commercial closed source

TRNSYS8 TRNSYS Devel-
opers Group

FMI CS 2.09 Commercial semi-open source

TRACE 70010 Trane None Commercial closed source
ESP-r11 Energy Sys-

tems Research
Unit (ESRU)
University of
Strathclyde

Co-Simulation Primarily used in research, free open
source12

Table B.1: Whole building simulation software packages

although the actuation characteristics cannot be imported directly from the EnergyPlus model
and must be specified by hand (i.e. the B matrix).

B.3 Building Component Models

Another way to simulate a whole building is with component models that can be connected
together. One point of potential confusion is that these component models can be co-simulated
with some whole building energy simulations, notably EnergyPlus allows this level of integration
through the FMI standard where one defines which variables are exposed through the EnergyPlus
FMU, as used in [99] to co-simulate with CitySim on an urban scale. Table B.2 shows a list of
existing component models.

Co-simulation is becoming increasingly common when simulating large systems such as urban
energy systems [156] and smaller systems that are being modelled with increasing complexity such
as building energy models (BEM). A strong proponent of this has been the the IEA EBC Annex
60, now continued 2017 to 2022 as IBPSA Project 1 13, which implements physical equation
based models for building components written in Modelica [164]. These equation based models

1https://energyplus.net/
2https://github.com/lbl-srg/EnergyPlusToFMU
3https://github.com/NREL/EnergyPlus
4https://github.com/NREL/OpenStudio
5https://designbuilder.co.uk/
6https://www.equa.se/en/
7https://www.iesve.com/software
8http://www.trnsys.com/
9https://sourceforge.net/projects/trnsys-fmu/

10https://www.trane.com
11http://www.esru.strath.ac.uk/Programs/ESP-r.htm
12https://github.com/ESP-rCommunity/ESP-rSource
13https://ibpsa.github.io/project1/index.html
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Software Developer FMI support Summary
Modelica
Buildings
library [165]

IBPSA Project 1
affiliates

FMI ME/CS
1.0 and 2.0

Equation based modelica models for
thermal characteristics and HVAC
systems. Free open source18.

BRCM Matlab
Toolbox[145]

Automatic Control
Lab, ETH Zurich

None Simulates building with equation
based component models for ther-
mal characteristics and HVAC sys-
tems based on bilinear resistance-
capacitance, Free and open source
19.

Radiance 20 Lawrence Berkeley
Lab

None Lighting simulation with ray trac-
ing. Can couple with EnergyPlus in
OpenStudio. Free and open source
21

obFMU[65] Lawrence Berkeley
Lab

FMI Designed for co-simulation, can be
implemented with obXML schema.
Free and open source22.

Table B.2: List of building component models

when composed together into larger hierarchical system simulations can be optimized within
a Modelica simulation environment with symbolic manipulation and use of application specific
solvers [161]. There have also been reports showing that the development of these models is less
time consuming and easier to debug [162]. An accuracy comparison between a small EnergyPlus
building model and Modelica model in [53] shows less than 1% difference at maximum for indoor
air temperature. A similar comparison of a BRCM and EnergyPlus model shows a difference
within 0.5◦C over a 5 day test simulation [145].

It should be noted that the Modelica Buildings Library with the support of IEA EBC Annex
60 is the base of several other open source research-driven modelica building modeling libraries
together including: AixLib14 from RWTH Aachen University[106], BuildingSystems15 from UdK
Berlin, IDEAS16 from KU Leuven, and BuildSysPro17 from EDC[125]. As previously mentioned
the obXML and obFMU following the FMI standard are presented to solve interoperability issues
for simulation [65]. However, the modelling capabilities are extremely limited.

B.4 Hierarchical Simulation Environments

Beyond building simulation is the simulation environment, also sometimes called simulation
manager or master, that must co-simulate the building, additional disturbances (such as occupant
behaviour), and the control system. In our case the control system includes additional actuation
models for the building for MPC. The building model can also be a whole building simulation

14https://github.com/RWTH-EBC/AixLib
15https://github.com/UdK-VPT/BuildingSystems
16https://github.com/open-ideas/IDEAS
17https://github.com/edf-enerbat/buildsyspro
18https://github.com/lbl-srg/modelica-buildings
19http://www.brcm.ethz.ch/doku.php
20http://radsite.lbl.gov/radiance/HOME.html
21https://github.com/NREL/Radiance
22https://behavior.lbl.gov/?q=node/4
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package coupled with component models. Defining the input and output couplings between
simulation sub-models in a hierarchical way makes use of modern software developments to give
greatest flexibility in simulation design. A list of available simulation environments is given in
table B.3.

The Building Control Virtual Test Bed (BCVTB) has unique interfaces for FMI ME/CS 1.0 and
2.0 as well as EnergyPlus, Matlab, Simulink, Modelica models, and hardware protocols such as
BACnet. However the BCVTB project is not actively developed with the latest activity from
2016. The same development team is now working on the Modelica Buildings Library which has
had recent major releases and is actively developed. Similarly, Spawn of EnergyPlus (SOEP)
35 is planned as successor to BCVTB and is in specification development. The MLE+ Toolbox
serves a similar function as BCVTB and allows for greater use of Matlab, however has been
inactive for longer and is not as full featured. In any case simulation of occupant behavior would
need to be implemented separately.

B.5 Discussion of Building Modelling Platforms

In practice there are many possible solutions to scalable and extensible building simulation.
When considering applications in model-based building control design a good account is given in
[11], the authors here note only Modelica based modeling has the capability for advanced control
design and rich building thermodynamics models. With consideration to occupant behaviour
models in building simulation programs another account is is given in [67], the authors of which
also propose the obFMU using the FMI standard. Driven largely by the IEA EBC Annex 60
(now IBPSA Project 1) there have been many recent building modeling software development
projects with Modelica and other FMI compliant models. Modelica models provide the greatest
support for stand-alone components within a building model and also interfaces for non-linear
solvers. For these reasons a JModelica, which focuses on Modelica equation based models, based
modeling platform is investigated further for implementation. Some other notable examples of
building simulation and optimal control software are mentioned here. EnergyPlus and Matlab
coupled within the BCVTB in [120] and [149]. EnergyPlus coupled with with the Matlab GPML
library used in [71]. The authors in [75] show how Modelica can be used to simplify creation of
linear HVAC models for MPC using the Modelica Buildings Library. Also, [14] shows a method
to reduce the average computation time for numerically solving nonlinear MPC problems. Using
Dymola [135] present implementations for standardised building control functions using existing
building component modelica models. Finally [133] uses HVAC models built using the Modelica
Buildings Library can be solved using multi-agent systems.

23https://simulationresearch.lbl.gov/bcvtb
24https://github.com/lbl-srg/bcvtb
25http://www.jmodelica.org/
26https://www.3ds.com/products-services/catia/products/dymola/
27https://openmodelica.org/
28https://github.com/OpenModelica
29http://bauklimatik-dresden.de/nandrad/
30https://github.com/lbl-srg/MPCPy
31https://sourceforge.net/p/fmipp/code/ci/master/tree/
32https://bitbucket.org/account/user/mosaik/projects/PROJ
33https://ch.mathworks.com/products/simulink.html
34https://github.com/mlab-upenn/mlep_v1.1
35https://lbl-srg.github.io/soep/
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Software Developer FMI support Summary
BCVTB23 DoE BTO, LBL FMI ME/CS

1.0 and 2.0
Middleware based on the Ptolemy
II framework. EnergyPlus, Radi-
ance, Matlab, and Modelica inter-
faces. Free open source24.

JModelica[4] Modelon AB
and Department
of Automatic
Control, Lund
University

FMI ME/CS
1.0 and 2.0

Free and open source25, Python in-
terface for Modelica and FMI simu-
lation, linked to multiple solvers.

Dymola26 Dassault Sys-
temes

FMI ME/CS
1.0 and 2.0

Proprietary closed source, multiple
language interfaces for Modelica and
FMI simulation.

OpenModelica27 Open Source
Modelica Consor-
tium

FMI ME/CS
1.0 and 2.0

Free and open source28, multiple
language interfaces for Modelica and
FMI simulation.

NANDRAD29 Institute for
Building Cli-
matology, TU
Dresden

FMI ME/CS
2.0

Developed for large building simula-
tion and compatibility with Model-
ica models. In experimental devel-
opment. Closed source.

MPCPy[22] Lawrence Berke-
ley National Lab-
oratory

FMI ME/CS
1.0 and 2.0

Lightweight python API for MPC
using FMI. Based on JModelica
PyFMI core for FMI interface, free
and open source30

Mosaik[136] Oldenburg Insti-
tute for Informa-
tion Technology

FMI ME/CS
1.0

Python based API for co-simulation
developed for energy grids. FMI in-
terface through FMI++31. Free and
open source32.

Simulink33 The MathWorks,
Inc.

FMI ME/CS
1.0 and 2.0
(import only)

Model-based design and simulation.
Supports Matlab, legacy for C and
C++. Proprietary closed source.

MLE+ Tool-
box [18]

mLAB, Univer-
sity of Pennsylva-
nia

FMI ME/CS
1.0 and 2.0

Couples EnergyPlus with Matlab
in a Matlab run-time environment.
Free and open source34.

Table B.3: List of available simulation environments
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B.6 Building Material Properties

Component Material Thickness
(mm)

Density
(kg/m3)

Thermal
conductivity
(W/mK)

Heat
Capacity
(J/kgK)

Roofs
Asphalt 10 2100 0.70 1000
Expanded
Polystyrene

150 30 0.035 1450

Concrete 240 2000 1.35 1000

External walls
Plaster 10 1600 0.80 1000
Expanded
Polystyrene

120 30 0.035 1450

Brickwork 180 1600 0.70 840
Internal walls Brickwork 120 1600 0.70 840

Ground floor
Hardwood 20 700 0.17 1600
Expanded
Polystyrene

140 30 0.035 1450

Concrete 200 2000 1.35 1000

Table B.4: Building model thermal properties, material layers listed outer surface to inner surface. Thermal
properties from ISO-10456[23].
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Appendix C

Additional Simulation Results
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Figure C.1: Simulation results with on-line learned occupancy and thermal preference models for 15 occupants
in three zone building, lc = lw = 10. From top to bottom zone 1, zone 2, and zone 3.
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Figure C.2: Simulation results with perfect occupancy and thermal preference models for 15 occupants in three
zone building, lc = lw = 10. From top to bottom zone 1, zone 2, and zone 3.
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Figure C.3: Simulation results with constant 21 ◦C comfort temperature and schedule based occupancy model
for 15 occupants in three zone building. From top to bottom zone 1, zone 2, and zone 3.
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Figure C.4: Simulation results with constant 21 ◦C comfort temperature and perfect occupancy model for 15
occupants in three zone building. From top to bottom zone 1, zone 2, and zone 3.
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